Report Customer
V. 2.0 zkLink

Smart Contract Audit

Circults

7th February 2023 \/\ ABDK

, Consulting

Contents

1

2
3
4
5
6

Changelog
Introduction
Project scope
Methodology
Our findings

Critical Issues
CVF-1. FIXED
CVF-2. FIXED
CVF-3. FIXED
CVF-4. FIXED
CVF-5. FIXED
CVF-6. FIXED
CVF-7. FIXED
CVF-8. FIXED
CVF-9. FIXED
CVF-10. FIXED
CVF-11. FIXED
CVF-12. FIXED

Major Issues
CVF-13. INFO
CVF-14. INFO
CVF-15. INFO
CVF-16. FIXED
CVF-17. INFO
CVF-18. INFO
CVF-19. INFO
CVF-20. INFO
CVF-21. INFO
CVF-22. INFO
CVF-23. FIXED
CVF-24. INFO
CVF-25. INFO
CVF-26. INFO
CVF-27. INFO
CVF-28. INFO
CVF-29. INFO
CVF-30. INFO
CVF-31. INFO

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

CVF-32. FIXED . . o 26

CVF-33. INFO . . . e e e 27
CVF-34. INFO . . . e e e 27
CVF-35.INFO e 27
CVF-36. INFO e 28
CVE-37. INFO e e 28
CVF-38. INFO e e 29
CVF-39. FIXED . . . e e e 29
CVF-40. FIXED . . . e e e e 29
CVF-41. FIXED e e 30
CVF-42. FIXED . . . e e 30
CVF-43. FIXED . . e e e e 31
CVF-44. INFO e e e e e 31
CVF-45. FIXED . . . e e e 32
CVF-46. FIXED e 32
CVF-47. FIXED o e e e 32
CVF-48. INFO . . . e e e e 33
CVF-49. INFO e e e 33
CVF-50. INFO e e 33
CVF-51. INFO . . . e 34
CVE-52. INFO e e 34
CVE-53. FIXED . . o e e 35
CVF-54. FIXED . . . e e e 35
CVF-55.INFO e e 36
CVF-56. INFO e e 36
CVF-57. INFO e 37
CVE-58. FIXED . . . o e e 37
CVF-59. FIXED . . . e e e e e e e 37
Moderate Issues 38
CVF-60. INFO e e 38
CVF-61. INFO . . . e e e e 38
CVF-62. INFO e e 39
CVE-63. INFO e e 39
CVF-64. INFO . . . e e e e 40
CVF-65. INFO e e 40
CVF-66. INFO e e 41
CVF-67. INFO e 41
CVE-68. FIXED . . . e e 41
CVF-69. FIXED . . . e e e e 42
CVF-70. INFO . . . e e 43
CVF-71. FIXED . . o e e e 44
CVF-72. FIXED . . . e e e 44
CVFE-73. INFO . . . e e 45
CVFE-74. INFO e e 45

CVE-75. INFO . . . 46

9 Minor Issues 47

CVF-76. FIXED . o o 47
CVE-77.INFO . . . 47
CVF-78. FIXED . . o 47
CVF-79. FIXED . o o 48
CVF-80. INFO 48
CVE-81.INFO 48
CVF-82. INFO e 49
CVF-83. FIXED . . 49
CVF-84.INFO 49
CVF-85. INFO . . . 50
CVF-86.INFO e 50
CVF-87. FIXED .« o o 51
CVF-88. FIXED . . o 51
CVF-89. FIXED . . . 52
CVF-90. INFO . . . 53
CVF-91L FIXED . . . 53
CVF-92. FIXED . . 53
CVF-93. INFO . . . 54
CVF-94. FIXED . . . e 54
CVF-95. FIXED . . 54
CVF-96. INFO 55
CVF-97.INFO . . . 95
CVF-98. INFO 55
CVF-99. FIXED . . o 56
CVF-100. FIXED . . o o 56
CVF-101. FIXED . o oo 56
CVF-102. FIXED . o o oo 57
CVF-103. INFO . . . 57
CVF-104. FIXED . . o oo 57
CVF-105. FIXED . . o o e e 58
CVF-106. FIXED . . . o o e e e e 58
CVF-107. FIXED oo e 58
CVF-108. INFO . . . 59
CVF-109. FIXED . . o o 59
CVF-T0. FIXED . . . o 59
CVF-MN. FIXED . o 60
CVF-M2. FIXED . . . 60
CVE-M3. FIXED . o o 60
CVF-TM4. INFO . . . o e 61
CVF-MS. FIXED oo 61
CVF-T6. INFO 61
CVF-M7 FIXED . . 62
CVFE-M8. FIXED . . o 63
CVFE-MO. INFO 63

CVF-121. FIXED . o o 64

CVF-122. FIXED . o o o 64
CVF-123. FIXED . o o o 65
CVF-124. FIXED . . o o 65
CVF-125. INFO . . o 65
CVF-126. INFO . . . 66
CVF-127.INFO . . o o 66
CVF-128. INFO . . . 66
CVF-129. INFO . . . 67
CVF-130. FIXED . . o o 67
CVF-131. INFO . . o o 67
CVF-132. INFO 68
CVF-133. INFO . . o 68
CVF-134. INFO 68
CVF-135. FIXED . . o o 69
CVF-136. INFO . . . 69
CVF-137. INFO . . . o 70
CVF-138. FIXED . o o o 70
CVF-139. FIXED . o o o 70
CVF-140. INFO 71
CVF-T41. INFO . . . o 71
CVF-142. INFO . . . 72
CVF-143. FIXED . . o o 73
CVF-144. INFO e 74
CVF-145. INFO . . . e 74
CVF-146. INFO e 74
CVF-147. FIXED . . o o 75
CVF-148. INFO 75
CVF-149. FIXED . . o o o /6
CVF-150. FIXED . . o o o 76
CVF-151. FIXED . . o 76
CVF-152. INFO . . o e 77
CVF-153. FIXED o e 78
CVF-154. FIXED . . o o o 79
CVF-155. FIXED . . o o 79
CVF-156. INFO 80
CVF-157. INFO . . . o 80
CVF-1588. FIXED o 81
CVF-159. INFO . . . e 81
CVF-160. INFO 81
CVF-161. FIXED . . o o 82
CVF-162. FIXED . . o o 82
CVF-163. FIXED . . o o 83
CVF-164. FIXED . . o o o 83
CVF-165. FIXED . . o o 83

CVF-166. FIXED . . . o o e 84

CVF-167. FIXED . . o o 84
CVF-168. FIXED . . . o 84
CVF-169. INFO e 85
CVF-170. INFO 85

1 Changelog

I K

30.01.23 A. Zveryanskaya Initial Draft
0.2 30.01.23 A. Zveryanskaya Minor revision
1.0 31.01.23 A. Zveryanskaya Release

1.1 07.02.23 A. Zveryanskaya Issues classification s

added
1.2 07.02.23 A. Zveryanskaya Syntax highlighted
2.0 07.02.23 A. Zveryanskaya Release

ABDK 7

2 Introduction

The following document provides the result of the audit performed by ABDK Consulting
(Mikhail Vladimirov and Dmitry Khovratovich) at the customer request. The audit goal is
a general review of the smart contracts structure, critical/major bugs detection and
issuing the general recommendations.

zkLink is a trading-focused multi-chain L2 network with unified liquidity secured by
ZK-Rollups.

ABDK 8

3 Project scope

We were asked to review:

¢ Original Repository

o Fix Repository

Files:

witness/

account.rs
element.rs

serialization.rs

change_pubkey
_offchain.rs

forced_Exit.rs
order_matching.rs

utils.rs

op_circuit/

ABDK

change_pubkey
_offchain.rs

full_exit.rs

transfer.rs

allocated_structures.rs

exit_circuit.rs

signature.rs

close_account.rs
full_exit.rs
transfer.rs

withdraw.rs

deposit.rs
noop.rs

transfer_to_new.rs

circuit.rs
operation.rs

utils.rs

deposit.rs
noop.rs

transfer_to_new.rs

forced_exit.rs
order_matching.rs

withdraw.rs

https://github.com/zkLinkProtocol/zklink-circuit/tree/5ec25b3378849d86df3f5405b593c20342f72305
https://github.com/zkLinkProtocol/zklink-circuit/tree/10edd68a6d78a5182e200cb82f4a53b0be379d81

4 Methodology

The methodology is not a strict formal procedure, but rather a selection of methods and
tactics combined differently and tuned for each particular project, depending on the
project structure and technologies used, as well as on client expectations from the audit.

» General Code Assessment. The code is reviewed for clarity, consistency, style,
and for whether it follows best code practices applicable to the particular
programming language used. We check indentation, naming convention,
commented code blocks, code duplication, confusing names, confusing, irrelevant,
or missing comments etc. At this phase we also understand overall code structure.

» Entity Usage Analysis. Usages of various entities defined in the code are
analysed. This includes both: internal usages from other parts of the code as well
as potential external usages. We check that entities are defined in proper places
as well as their visibility scopes and access levels are relevant. At this phase, we
understand overall system architecture and how different parts of the code are
related to each other.

e Access Control Analysis. For those entities, that could be accessed externally,
access control measures are analysed. We check that access control is relevant
and done properly. At this phase, we understand user roles and permissions, as
well as what assets the system ought to protect.

» Code Logic Analysis. The code logic of particular functions is analysed for
correctness and efficiency. We check if code actually does what it is supposed to
do, if that algorithms are optimal and correct, and if proper data types are used.
We also make sure that external libraries used in the code are up to date and
relevant to the tasks they solve in the code. At this phase we also understand
data structures used and the purposes they are used for.

We classify issues by the following severity levels:

o Critical issue directly affects the smart contract functionality and may cause a
significant loss.

» Majorissue is either a solid performance problem or a sign of misuse: a slight
code modification or environment change may lead to loss of funds or data.
Sometimes it is an abuse of unclear code behaviour which should be double
checked.

* Moderate issue is not an immediate problem, but rather suboptimal performance
in edge cases, an obviously bad code practice, or a situation where the code is
correct only in certain business flows.

» Minor issues contain code style, best practices and other recommendations.

ABDK 10

5 Our findings

We found 12 critical, 47 major, and a few less important issues. All identified Critical
issues have been fixed.

ISSUGS Active

0

Severity

Critical 12

Active Fixed

Major 32 15

Active Fixed

Moderate 12 4
. Active Fixed
Minor 42 53

Fixed 84 out of 170 issues

ABDK 1

6 Criticallssues

CVF-1. FIXED

+ Category Flaw » Source exit_circuit.rs

Description This code effectively does nothing. Should probably enforce an equality of
is_required_source_token_and_target_token to true.

Client Comment Modified to Boolean::enforce_equal.

68 Boolean::and(
cs.namespace(|| " require correct token"),
70 &is required source token and target token,
&Boolean: :constant(true),
)?;

’

ABDK 12

CVF-2. FIXED

+ Category Flaw » Source withdraw.rs

Description ‘b’ must be amount+fee for chunkO and amount for chunk1, whereas here it
can be any of them in both chunks. This may lead to fund loss.

Client Comment The check for chunkO and chunk1 respectively contains is_user_b_cor-
rect and is_global_asset_b_correct.

89 let is b correct = {
90 let is user b correct = Boolean::from(Expression::equals(
cs.namespace(|| "is user b correct"),
op data.b.get number(),
sum_amount fee.clone(),
)?);
Llet is global asset b correct = Boolean::from(Expression::equals
—
cs.namespace(|| "is global asset b correct"),
op data.b.get number(),
Expression::from(op data[WithdrawArgs::FullAmount].
— get _number()),
)?);
100 multi or(
cs.namespace(|| "is b correct in chunk@"),

&[is user b correct, is global asset b correct],
)?

CVF-3. FIXED

« Category Flaw e Source withdraw.rs

Description This allows any fourth chunk to pass the function.
Client Comment Added the chunk3_valid_flags.
208 boolean or(
cs.namespace(|| "is valid withdraw op"),

210 &is op valid,
&is correct chunk numbers[3]

ABDK 13

529

134

CVF-4. FIXED

o Category Overflow/Underflow » Source order_matching.rs

Description This may overflow if the nonce has been just taken from the updated order,
which is not checked for non-overflow.

Recommendation Consider checking all nonces for overflows.

Client Comment Added nonce overflow check.

Expression::from(pre branch.order.nonce.get number()) + Expression::
— ub4::<CS>(1),

CVF-5. FIXED

+ Category Flaw e Source deposit.rs

Description The "is_correct_chunk_numbers[3].clone()” allows the "deposit” function to
successfully validate a chunk with index 3 even if its TX type is not deposit. So if some
TX type (not necessary deposit) has at least four chunks, the fourth chunks will be con-
sidered valid regardless of its content.

Client Comment Added the chunk3_valid_flags.

&[is _chunk0 valid, is chunkl valid, is chunk2 valid,
< 1s correct chunk numbers[3].clone()],

ABDK 14

35

37

148

150

219
220

271

273

317

343

CVF-6. FIXED

+ Category Flaw » Source change_pubkey_offchain.rs
Description The witness is generated using change_pubkey_offcahin.account_id as

changer, whereas op_data carries temp_account_id. If these two variables differ, the
proof will fail.

Client Comment Removed temp_account_id, There’s really no problem here, and it’s re-
dundant code, because in the state handler module, temp_account_id is also derived from
the account_id.

account id: *change pubkey offchain.account id,
temp account id: *change pubkey offchain.tx.account id,

Llet account id fe = Fr::from u64(change pubkey offcahin.account id
< as ub4);

Llet temp account id fe = Fr::from u64(change pubkey offcahin.
— temp account id as u64);

before: OperationBranch {
account id: Some(account id fe),

frs with 4 bytes: vec![
Some(temp account id fe),

ChangePubkeyArgs: :AccountId => &self.ces with 4 bytes[1],

CVF-7. FIXED

o Category Overflow/Underflow » Source utils.rs

Description Overflow is possible here.

Client Comment Considering E::Fr::CAPACITY=253, | checked the upper limit of param-
eters a and b, both a and b are less than 27126, so that the subsequent multiplication will
not overflow. 2*126 is about 8¥10”37, and can accommodate any currency with a total of
10718 and a precision of 18. It's enough for most coins.

Llet product = a.mul(

PN

ABDK 15

444

465

CVF-8. FIXED

o Category Overflow/Underflow » Source utils.rs

Description Overflow is possible here. The quotient variable must be range checked first.

Client Comment Considering E::Fr::CAPACITY=253, | checked the upper limit of param-
eters a and b, both a and b are less than 27126, so that the subsequent multiplication will
not overflow. 2*126 is about 8%10”37, and can accommodate any currency with a total of
10718 and a precision of 18. It's enough for most coins.

Let quotient mul b = quotient.mul(

CVF-9. FIXED

+ Category Flaw * Source utils.rs

Description This condition is not sound if the middle product overflows.
Recommendation Consider checking that both a*magnify and b*(g+1) do not overflow.

Client Comment Considering E::Fr::CAPACITY=253, | checked the upper limit of param-
eters a and b, both a and b are less than 27126, so that the subsequent multiplication will
not overflow. 2*126 is about 8¥10”37, and can accommodate any currency with a total of
10718 and a precision of 18. It's enough for most coins.

ABDK 16

485

145

238

CVF-10. FIXED

+ Category Flaw » Source utils.rs

Description All multiplications and additions in this function may overflow, and the range
checks in the end of the function do not prevent it. For example, if k=2"128-1 but x and
y being small, the x*y may be between k"2 and (k+1)"2 as both overflow.

Recommendation Consider using big number arithmetic here.

Client Comment Considering E::Fr::CAPACITY=253, | checked the upper limit of param-
eters a and b, both a and b are less than 27126, so that the subsequent multiplication will
not overflow. 2*126 is about 8%10”37, and can accommodate any currency with a total of
10718 and a precision of 18. It’s enough for most coins.

pub fn sqrt enforce<E: Engine, CS: ConstraintSystem<E>>(

CVF-11. FIXED

o Category Flaw » Source full_exit.rs

Description The variable is_correct_chunk_numbers[3] is not checked against anything
and thus is true for any 4-th chunk, which makes the entire function to return true.

Client Comment Added the chunk3_valid_flags.

&[is chunk® valid, is chunkl valid, is chunk2 valid,
— 1s correct chunk numbers[3].clone()]

CVF-12. FIXED

+ Category Flaw » Source forced_exit.rs

Description The "is_correct_chunk_numbers[3]” allows the “forced_exit” function to suc-
cessfully validate a chunk with index 3 even if its TX type is not forced exit. So if some
TX type (not necessary forced exit) has at least four chunks, the fourth chunks will be
considered valid regardless of its content.

Client Comment Added the chunk3_valid_flags.

&is correct chunk numbers[3]

PN

ABDK 17

188

333

354

7 Major Issues

CVF-13. INFO

+ Category Suboptimal * Source exit_circuit.rs

Description Using SHA-256 for hashing public inputs is expensive.

Recommendation Consider using a zk friendly hash as in here https://docs.google.com/-
drawings/d/1v5zGTuydDuT2cIF52twJAS71h4kQRuk8dIZLCcZSiaY/edit?usp=sharing

Client Comment After that, I'll think about it.

Let mut hash block =
sha256: :sha256(cs.namespace(|| "sha256 of pub data"), &
— initial hash data)?;

let mut h = Sha256::new();

CVF-14. INFO

o Category Suboptimal » Source circuit.rs

Description SHA-256 calls are expensive in circuits.

Recommendation Consider using an algebraic hash inside the circuit and SHA-256
in the contract as described here https://docs.google.com/drawings/d/1v5zGTuyd-
DuT2cIF52twJAS71h4kQRuk8dIZLCcZSiaY/edit?usp=sharing

Client Comment After that, I'll think about it.

Let mut hash _block = sha256::sha256(cs.namespace("hash with pub

|
— data and op offset commitment"), &pack bits)?;

ABDK 18

CVF-15. INFO

+ Category Flaw » Source circuit.rs

Description There is no check to ensure that tx_type is valid.

Recommendation Consider adding such a check or explaining why it is not necessary.
Also, consider adding an explicit assert for this.

Client Comment There is no need to check here, the real check is that tx_type is checked
at the execution of each op.

419 tx type.get number(),

CVF-16. FIXED

» Category Bad naming e Source circuit.rs

Description This variable has the same name as an argument.
Recommendation Consider using a different name.

Client Comment Changed the variable name of the function entry.

458 ' let next chunk number = Expression::conditionally select(

ABDK 19

584

590

CVF-17. INFO

+ Category Suboptimal e Source circuit.rs

Description This function behaves differently for different operations and is away of the
chunk structure of particular operations. Such approach is very error -prone.

Recommendation Consider moving all operation-specific logic into files named after par-
ticular operations, and keeping only operation-agnostic logic here.

Client Comment Here’s the logic for determining the circuits of different blocks based on
contains_ops field, which is the binary bits of ops composition nunmber. The ops compo-
sition nunmber represents the minimum circuit execution selected based on the available
ops composition nunmbers of the environment configuration and the transactions in the
block.

&[zk link ops[WithdrawOp::0P _CODE as usize].clone(),
< 1s correct chunk numbers[1l].clone()],

zk _link ops[OrderMatchingOp::0P CODE as usize].clone(),
zk _link ops[ForcedExitOp::0P CODE as usize].clone(),

ABDK 20

701

708

710

CVF-18. INFO

o Category Overflow/Underflow » Source circuit.rs

Description Underflow is possible here.
Recommendation Consider using ‘less equal than fixed’ check instead

Client Comment pre_branch.token is a CircuitElement that contains a maximum of 16 bits
and cannot exceed max_token_id.

Llet diff token numbers = max token id.clone() - pre _branch.token.
< get _number();
let = diff token numbers.into bits le fixed(
cs.namespace(|| "pre account token number is smaller than
— processable number"),
balance tree depth(),
)?;
let diff token numbers = max token id.clone() - post branch.
— as_ref().unwrap().token.get number();
let = diff token numbers.into bits le fixed(
cs.namespace(|| "post account token number is smaller than
— processable number"),
balance tree depth(),
)2;

’

CVF-19. INFO

+ Category Suboptimal » Source circuit.rs

Description This function behaves differently for different operations and is away of the
chunk structure of particular operations. Such approach is very error -prone.

Recommendation Consider moving all operation-specific logic into files named after par-
ticular operations, and keeping only operation-agnostic logic here.

Client Comment This function is redundant. The check for this function has already been
done at the corresponding op.

937 fn assert global assert account<CS: ConstraintSystem<E>>(

ABDK 21

189

22

56

CVF-20. INFO

o Category Overflow/Underflow e Source deposit.rs

Description Overflow is possible here.
Recommendation Consider using ‘a’ and ‘b’ variables to prevent it.

Client Comment Although the value here is scaled up by 18 precision, there should not
be a coin with a total of more than 27E::Fr::CAPACITY(bn256=254) -10 *18. Here is the
code outside the circuit. If it overflows, there is a limit of 128bits in the corresponding
place of the circuit, so the proof cannot be generated.

bal.value.add assign(&amount as field element);

CVF-21. INFO

o Category Unclear behavior e Source withdraw.rs

Description This extends pubdata_bits with the current TX type, which could be different
from the withdraw TX type.

Recommendation Consider extending with the correct withdraw TX type.

Client Comment With zk_link_.ops in base_flags, @ compare global_vari-
ables.chunk_data.tx_type with all tx_type.

pubdata bits.extend(global variables.chunk data.tx type.get bits be
= ());

CVF-22. INFO

o Category Unclear behavior e Source withdraw.rs

Description This extends serialized_tx_bits with the current TX type, which could be dif-
ferent from the withdraw TX type.

Recommendation Consider extending with the correct withdraw TX type.

Client Comment With zk_link_.ops in base_flags, @ compare global_vari-
ables.chunk_data.tx_type with all tx_type.

serialized withdraw bits.extend(global variables.chunk data.tx type.
— get bits be());

PN

ABDK 22

22

23

115

CVF-23. FIXED

+ Category Flaw » Source order_matching.rs

Description Pubdata does not contain MakerlsSell flag, which makes it difficult to restore
the operations.

Client Comment Since pubdata contains MakerSellToken and TakerSellToken, Makerls-
Sell is not required. I've changed this part of the code a little bit to make it clearer.

Llet mut pubdata bits = Vec::with capacity(OrderMatchingOp: :CHUNKS *
< CHUNK BIT WIDTH);

CVF-24. INFO

+ Category Unclear behavior + Source order_matching.rs

Description This extends pubdata_bits with the current TX type, which could be different
from the order matching TX type.

Recommendation Consider extending with the correct order natching TX type.

Client Comment With zk_link_.ops in base_flags, @ compare global_vari-
ables.chunk_data.tx_type with all tx_type.

pubdata bits.extend(global variables.chunk data.tx type.get bits be
= ());

CVF-25. INFO

o Category Unclear behavior e Source order_matching.rs

Description This extends serialized_tx_bits with the current TX type, which could be dif-
ferent from the order matching TX type.

Recommendation Consider extending with the correct order matching TX type.

Client Comment With zk_link_ops in base_flags, compare global_vari-
ables.chunk_data.tx_type with all tx_type.

serialized tx bits version.extend(global variables.chunk data.
— tx_type.get bits be());

PN

ABDK 23

CVF-26. INFO

o Category Overflow/Underflow » Source order_matching.rs

Description Overflow is possible here

Client Comment Overflow case, will not be selected. If it's selected, there’s no way
that overflow can happen here, because ActualBaseAmount is part of residue CircuitEle-
ment::conditionally_select_with_number_strict function will limit the result of selection
does not exceed 128 - bit (with parameter y bits length is given priority to, The bits length
of pre_branch.order.residue is 128), here if overflow happens, it must not comply with the
128bit constraint. Of course, in actual case, Here the ActualBaseAmount is itself part of
pre_branch.order.residue, so naturally it won’t overflow either. When another op executes
this part of the code, although an overflow may occur, the overflow value will not be se-
lected because the judgment criteria are not met.

513 Expression::from(pre branch.order.residue.get number()) - op datal
— OrderMatchingArgs: :ActualBaseAmount].get number(),

CVF-27. INFO

o Category Overflow/Underflow e Source order_matching.rs

Description MakerBuyAmount is not restricted to any number of bits so that operations
with it are prone to overflows.

Recommendation Consider making it the same 20-byte size as TakerBuyAmount

Client Comment There is no overflow. If the value passed in does overflow, then the
MakerBuyAmount and TakerBuyAmount in the check_op_data_part_args function are dif-
ferent from the value actually computed in the circuit and the check will fail. The final con-
ditional selection constraint guarantees that the MakerBuyAmount and TakerBuyAmount
will not exceed 128bits.

540 let actual amount = AllocatedNum::conditionally select(
cs.namespace(|| "actual amount"),
op _data[OrderMatchingArgs: :MakerBuyAmount].get number(),

ABDK 24

564

582

CVF-28. INFO

o Category Overflow/Underflow » Source order_matching.rs

Description Overflow is possible here.
Client Comment There’s not that much to overflow. Assuming an overflow occurs here,
the 128bits constraint here will not be satisfied.

Expression::from(pre branch.balance.get number()) + op data.b.
< get _number(),

Expression::from(post branch.balance.get number()) + &
— exchange fee,

Expression::from(post branch.balance.get number()) + &
— actual amount - &exchange fee,

CVF-29. INFO
o Category Overflow/Underflow e Source order_matching.rs

Description Underflow is possible here

Client Comment exchange_fee is calculated based on percentage actual_amount and
Underflow is not possible. Assuming an underflow occurs here, the 128bits constraint
here will not be satisfied.

583 Expression::from(post branch.balance.get number()) + &actual amount

— - &exchange fee,

ABDK 25

CVF-30. INFO

« Category Unclear behavior * Source deposit.rs

Description This extends pubdata_bits with the current TX type, which could be different
from the deposit TX type.

Recommendation Consider extending with the correct deposit TX type.

Client Comment With zk_link_.ops in base_flags, @ compare global_vari-
ables.chunk_data.tx_type with all tx_type.

20 pubdata bits.extend(global variables.chunk data.tx type.get bits be
= ());

CVF-31. INFO

o Category Overflow/Underflow » Source deposit.rs

Description Overflow is possible here.

Client Comment | don’t think this problem exists. We can’t allow the total amount of
a coin to exceed 27128, and there will be no addition overflow. Assuming an overflow
occurs here, the 128bits constraint here will not be satisfied.

116 let updated balance = Expression::from(cur.balance.get number())
+ Expression::from(op data[DepositArgs::FullAmount].get number()
= };

CVF-32. FIXED

o Category Flaw » Source change_pubkey_offchain.rs

Description There is no nonce overflow check here, while the circuit has such check.
Thus, it is possible to generate a witness that cannot be proven.

Client Comment We will do this checking in the state handler module(which is used for
rapid transaction execution).

182 acc.nonce.add assign(&Fr::one());

PN

ABDK 26

21

48

147

CVF-33. INFO

« Category Unclear behavior » Source change_pubkey_offchain.rs

Description This extends pubdata_bits with the current TX type, which could be different
from the change pubkey offchain TX type.

Recommendation Consider extending with the correct change pubkey offchain TX type.

Client Comment With zk_link_.ops in base_flags, @ compare global_vari-
ables.chunk_data.tx_type with all tx_type.

pubdata bits.extend(global variables.chunk data.tx type.get bits be
= ());

CVF-34. INFO

o Category Unclear behavior » Source change_pubkey_offchain.rs

Description This extends serialized_tx_bits with the current TX type, which could be dif-
ferent from the change pubkey offchain TX type.

Recommendation Consider extending with the correct change pubkey offchain TX type.

Client Comment With zk_link_.ops in base_flags, @ compare global_vari-
ables.chunk_data.tx_type with all tx_type.

serialized tx bits.extend(global variables.chunk data.tx type.
— get bits be());

CVF-35. INFO

» Category Overflow/Underflow » Source change_pubkey_offchain.rs

Description This operation may overflow.

Client Comment | don’t think this problem exists. We can’t allow the total amount of
a coin to exceed 2"128, and there will be no addition overflow. Assuming an overflow
occurs here, the 128bits constraint here will not be satisfied.

Expression::from(cur.balance.get number()) + op datal
— ChangePubkeyArgs: :FeeUnpacked].get number(),

PN

ABDK 27

CVF-36. INFO

+ Category Procedural « Source utils.rs

Description This file contains both, circuit fragments and normal Rust utility functions.
Recommendation Consider separating these two classes of utilities into two files.

Client Comment Then we’ll consider splitting up.

CVF-37. INFO

+ Category Flaw » Source utils.rs

Description There is no check to ensure that the bits length is a factor of 8.
Recommendation Consider adding such a check.

Client Comment The assert check has been added on line 10 and the function on line
138 has been removed because of another issue that redefined the function.

10 | bits.chunks(8)

138 for byte chunk in byte chunks {

ABDK 28

107

284

309
310

CVF-38. INFO

« Category Unclear behavior » Source utils.rs

Description This packing method effectively drops MSB of r_y and does not take any bit
of r_x. This makes the full signature not recoverable. Why is this done?

Client Comment /n theory, we only need to know the y coordinate, and the highest bit
in 256bits of y coordinate is not necessary. We can use it to store a bit of x information,
which is convenient to select when recovering the elliptic curve points. This is a means
of compression for elliptic curve points. Since y is a scalar field element Fr that requires
only 254bit representation, the last two 2bits of the 32 bytes are free and can be used
to store the parity of the x coordinates. This compresses the x and y Fr into a single 32
bytes. This part of code is the original code of zksync, and | have not changed it. Based
on previous experience, | guess the reason for such coding should be this.

sig r packed bits.extend(signature r y be bits[1l..].iter());

CVF-39. FIXED

+ Category Suboptimal » Source utils.rs

Recommendation This function calculates: a - a*n/d <= b <= a + a*n/d it would be more
reasonable to calculate: a*x/y <= b <= a*y/x

Client Comment This function is no longer used and has been removed.

pub fn constraint two number error<E:Engine, CS: ConstraintSystem<E
— >>(

CVF-40. FIXED
o Category Overflow/Underflow » Source utils.rs

Description This length does not seem to be sufficient as |a-b| may be BIT_WIDTH long.

Client Comment This function is no longer used and has been removed.

CircuitElement::from number with known length(
cs.namespace(|| "chosen number as ce"),
selected number,
FR BIT WIDTH - 2,

PN

ABDK 29

CVF-41. FIXED

o Category Overflow/Underflow » Source utils.rs

Description This length does not seem to be sufficient as quotient may be BIT_WIDTH
long.

406 CircuitElement::from number with known length(
cs.namespace(|| "three precision quotient"),
guotient,

FR BIT WIDTH - 2

410)

CVF-42. FIXED

o Category Overflow/Underflow e Source utils.rs

Description Overflow is possible here.

Client Comment For a and b, the maximum (MAX_CALCULATION_BIT_WIDTH=126) limit
is done. Therefore, multiplication must not overflow(126+126<Fr::capacity=253). 126bit
is sufficient for most cryptocurrencies.

425 let magnify a = a.mul(
cs.namespace(|| "magnify a"),
&lification factor

)?;

’

ABDK 30

429
430

452

459
460

550

CVF-43. FIXED

+ Category Flaw » Source utils.rs

Description This length does not seem to be sufficient as product may be BIT_WIDTH
long.

Client Comment For a and b, the maximum (MAX_CALCULATION_BIT_WIDTH=126) limit
is done. Therefore, multiplication must not overflow(126+126<Fr::capacity=253). 126bit
is sufficient for most cryptocurrencies.

Let magnify a = CircuitElement::from number with known length(
cs.namespace(|| "magnify a with bits"),
magnify a,
FR BIT WIDTH - 2

Let lower bound = CircuitElement::from number with known length(
cs.namespace(|| "lower bound"),
quotient mul b,
FR BIT WIDTH - 2

)?

Let upper _bound = CircuitElement::from number with known length(
cs.namespace(|| "upper bound"),
upper _bound,
FR BIT WIDTH - 2,

CVF-44. INFO

+ Category Documentation » Source utils.rs

Description This function fails for inputs that are not unpacked values.
Recommendation Consider documenting it.

Client Comment We check if the value is packable as soon as the transaction enters
layer2. Non-packable transactions will be returned.

pub fn pack amount with exponent and mantissa<E: Engine, CS:
< ConstraintSystem<E>>(

PN

ABDK 31

277

289

237

CVF-45. FIXED

+ Category Flaw e Source transfer_to_new.rs

Description There is no nonce overflow check here, while the circuit has such check.
Thus, it is possible to generate a witness that cannot be proven.

Client Comment We will do this checking in the state handler module. The Nonce type
in the transaction is u32, so it cannot exceed 32bits. Therefore, you only need to check
that the Nonce is not equal to u32::MAX.

acc.nonce.add assign(&Fr::one());

CVF-46. FIXED

+ Category Flaw + Source withdraw.rs

Description There is no nonce overflow check here, while the circuit has such check.
Thus, it is possible to generate a witness that cannot be proven.

Client Comment We will do this checking in the state handler module.

acc.nonce.add assign(&Fr::one());

CVF-47. FIXED

+ Category Flaw e Source transfer.rs

Description There is no nonce overflow check here, while the circuit has such check.
Thus, it is possible to generate a witness that cannot be proven.

Client Comment We will do this checking in the state handler module.

acc.nonce.add assign(&Fr::one());

ABDK 32

22

57

19

CVF-48. INFO

« Category Unclear behavior » Source transfer_to_new.rs

Description This extends pubdata_bits with the current TX type, which could be different
from the transfer to new TX type.

Recommendation Consider extending with the correct transfer to new TX type.

Client Comment With zk_link_.ops in base_flags, @ compare global_vari-
ables.chunk_data.tx_type with all tx_type.

pubdata bits.extend(global variables.chunk data.tx type.get bits be
= ());

CVF-49. INFO

o Category Unclear behavior » Source transfer_to_new.rs

Description This extends serialized_tx_bits with the current TX type, which could be dif-
ferent from the transfer to new TX type.

Recommendation Consider extending with the correct transfer to new TX type.

Client Comment With zk_link_.ops in base_flags, @ compare global_vari-
ables.chunk_data.tx_type with all tx_type.

serialized tx bits.extend(tx code.get bits be());

CVF-50. INFO

» Category Unclear behavior » Source full_exit.rs

Description This extends pubdata_bits with the current TX type, which could be different
from the full exit TX type.

Recommendation Consider extending with the correct full exit TX type.

Client Comment With zk_link_.ops in base_flags, @ compare global_vari-
ables.chunk_data.tx_type with all tx_type.

pubdata bits.extend(global variables.chunk data.tx type.get bits be
= ());

PN

ABDK 33

23

49

CVF-51. INFO

« Category Unclear behavior » Source transfer.rs

Description This extends pubdata_bits with the current TX type, which could be different
from the transfer TX type.

Recommendation Consider extending with the correct transfer TX type.

Client Comment With zk_link_.ops in base_flags, @ compare global_vari-
ables.chunk_data.tx_type with all tx_type.

pubdata bits.extend(global variables.chunk data.tx type.get bits be
= ());

CVF-52. INFO

o Category Unclear behavior o Source transfer.rs

Description This extends serialized_tx_bits with the current TX type, which could be dif-
ferent from the transfer TX type.

Recommendation Consider extending with the correct transfer TX type.

Client Comment With zk_link_.ops in base_flags, @ compare global_vari-
ables.chunk_data.tx_type with all tx_type.

serialized tx bits.extend(global variables.chunk data.tx type.
— get bits be());

ABDK 34

CVF-53. FIXED

+ Category Procedural » Source allocated_structures.rs

Description The vector lengths are inconsistent with those set in ‘operation.rs..
Recommendation Consider using named constants and define those in a common file.

Client Comment Added constant.

346 ces with bool: vec![ce with bool;2],
ces with 1 byte: vec![ce with 1 byte; 7],
ces with 2 bytes: vec![ce with 2 bytes.clone(); 71,
ces with 4 bytes: vec![ce with 4 bytes; 15],
350 ces with 8 bytes: vec![ce with 8 bytes; 4],
ces with 15 bytes: vec![ce with 15 bytes; 2],
ces with 16 bytes: vec![ce with 16 bytes.clone(); 12],
ces with 20 bytes: vec![ce with 20 bytes; 3],
ces with max bytes: vec![ce with max bytes; 1],
fee packed ces: vec![ce with 2 bytes; 2],
fee unpacked ces: vec![ce with 16 bytes.clone(); 2],
amount packed ces: vec![ce with 5 bytes; 5],
amount unpacked ces: vec![ce with 16 bytes; 5],

CVF-54. FIXED

+ Category Flaw * Source utils.rs

Description There is no check that the number of operations matches the number of
pubdata chunks.

Recommendation Consider adding such a check.

Client Comment Since NoOp might be populated later, | considered adding a check on
the number of OperationUints and the length of pubdata in the calculate_pubdata_com-
mitment function.

74 ops: Vec<OperationUnit<Engine>>,
pubdata: Vec<bool>,

ABDK 35

24

26

CVF-55. INFO

« Category Unclear behavior » Source forced_exit.rs

Description This extends pubdata_bits with the current TX type, which could be different
from the forced exit TX type.

Recommendation Consider extending with the correct forced exit TX type.

Client Comment With zk_link_.ops in base_flags, @ compare global_vari-
ables.chunk_data.tx_type with all tx_type.

pubdata bits.extend(global variables.chunk data.tx type.get bits be
= ());

CVF-56. INFO

o Category Unclear behavior » Source forced_exit.rs

Description There are no authorization checks for the initiator account. Does this mean
that anybody may initiate a forced exit?

Client Comment Can only ForcedExit inactive accounts. The initiator can be anyone,
considering that some smart contracts charge money to the second layer, but the smart
contract has no private key, because it cannot be used as a ChangePubKey, the funds at
the second layer cannot be referred to the first layer, so forcedExit is required. Refer to
https://preview-docs.zk.link/docs/developer/terminology/#forcedexit.

pubdata bits.extend(op data[ForcedExitArgs::InitiatorAccountId].
— get bits be());

pubdata bits.extend(op data[ForcedExitArgs::InitiatorSubAccountId].
— get bits be());

ABDK 36

CVF-57. INFO

« Category Unclear behavior » Source forced_exit.rs

Description This extends serialized_tx_bits with the current TX type, which could be dif-
ferent from the forced exit TX type.

Recommendation Consider extending with the correct forced exit TX type.

Client Comment With zk_link_.ops in base_flags, @ compare global_vari-
ables.chunk_data.tx_type with all tx_type.

53 serialized tx bits.extend(global variables.chunk data.tx type.
— get bits be());

CVF-58. FIXED

o Category Flaw » Source forced_exit.rs

Description There is no nonce overflow check here, while the circuit has such check.
Thus, it is possible to generate a witness that cannot be proven.

Client Comment We will do this checking in the state handler module.

248 ' acc.nonce.add assign(&Fr::one());

CVF-59. FIXED

+ Category Flaw * Source element.rs

Description There is no check to ensure that the length doesn’t exceed the field capacity.
Recommendation Consider adding such a check.

Client Comment Added check.

1 pub fn unsafe empty of some length(zero num: AllocatedNum<E>, length
< 1 usize) -> Self {

ABDK 37

8 Moderate Issues

CVF-60. INFO

+ Category Procedural e Source circuit.rs
Recommendation Consider calling this function in each operation-specific call in order

to distinguish between the two cases: when we have to check the prev.branch becomes
post.branch, and when we do not

381 fn contains double account modules(&self) -> bool {

CVF-61. INFO

o Category Overflow/Underflow » Source circuit.rs

Description Underflow is possible here.
Recommendation Consider working with addition instead.

Client Comment I'm assuming underflow, and it doesn’t pass the equal check.There is no
token id as large as in the underflow case.

630 Llet real 11 token = Expression::from(op data[CommonArgs::L1Token].
< get number()) - Expression::u64::<CS>(USDX TOKEN ID RANGE as
— u64);

ABDK 38

CVF-62. INFO

+ Category Suboptimal * Source deposit.rs

Description These variables are not range-checked against the expected bitlengths.
Recommendation Consider asserting.

Client Comment | don'’t think there are any overflow issues here, the data is handled by
the state handler, and the type conversions are small to large.

161 Llet account id fe = Fr::from u64(deposit.account id as u64);

Llet global account id fe = Fr::from u64(*GLOBAL ASSET ACCOUNT ID as
— u64);

Llet chain id fe = Fr::from u64(deposit.chain id as u64);

Llet 11 source token fe = Fr::from u64(deposit.ll source token as ub64
=);

let 12 target token fe = Fr::from u64(deposit.l2 target token as u64
=);

Llet 11 source token after mapping = Fr::from u64(deposit.
— 11 source_token after mapping as u64);

Let amount as field element = Fr::from big uint(deposit.amount.into

= ());

CVF-63. INFO

o Category Overflow/Underflow e Source order_matching.rs

Description Overflow here may cause false positive.

Client Comment There’s not that much to overflow.

670 Expression::from(op data[OrderMatchingArgs: :ExpectQuoteAmount].
< get number()) +
op data[OrderMatchingArgs: :ExpectBaseAmount].get number(),

ABDK 39

97

100

148

150

153

CVF-64. INFO

+ Category Documentation * Source deposit.rs

Description The same assignment was done for witness in chunk2 but not verified here.
Recommendation Consider explaining the inconsistency in the comment.

Client Comment This is explained in the document https://preview-docs.zk.link/docs/de-
veloper/terminology/#global-assets-account, | will be right here to add a comment.

chunkl valid flags.push(CircuitElement: :equals(
cs.namespace(|| "DepositArgs::ChainId == cur.sub account id in
— chunkl"),
&op data[DepositArgs::ChainId],
&cur.sub account id,

)?);

CVF-65. INFO

» Category Overflow/Underflow » Source change_pubkey_offchain.rs

Description These variables are not range-checked against the expected bitlengths.
Recommendation Consider asserting.

Client Comment These checks are done in the state handler.

Llet account id fe = Fr::from u64(change pubkey offcahin.account id
— as u64);

Llet sub _account id fe = Fr::from u64(change pubkey offcahin.
< sub_account id as u64);

Llet temp account id fe = Fr::from u64(change pubkey offcahin.
— temp account id as u64);

Llet validator account id fe = Fr::from u64(*FEE _ACCOUNT ID as u64);

let fee token fe = Fr::from u64(change pubkey offcahin.fee token as
— u64);

ABDK 40

106

584

370

CVF-66. INFO

« Category Unclear behavior » Source utils.rs

Description This bit is always false when FR is 255 bits or shorter.

Client Comment This is not always false, this bit is equivalent to the parity of the number.

sig r packed bits.push(signature r x be bits[FR BIT WIDTH PADDED -
— 11);

CVF-67. INFO

« Category Suboptimal * Source utils.rs

Description Conversion to a floating point number may loose precision, thus the un-
packed number m,may differ from the original one.

Recommendation Consider replacing this strict check with a range check.

Client Comment We check if the value is packable as soon as the transaction enters
layer2. Non-packable transactions will be returned.

let is correct a = CircuitElement::equals(

cs.namespace(|| "a != a unpacked"),
a,
& unpacked,
)?;
CVF-68. FIXED
+ Category Documentation » Source signature.rs

Recommendation Consider making this assumption explicit in the function documenta-
tion.

Client Comment Adopted.

ABDK 41

CVF-69. FIXED

« Category Unclear behavior » Source transfer.rs

Description The same data is added twice.

Client Comment This function has been deprecated.

157 append be fixed width(
&mut sig bits,
&self.before.witness.account witness.pub key hash.unwrap(),
160 NEW PUBKEY HASH WIDTH,
);
append be fixed width(
&nut sig bits,

&self.before.witness.account witness.pub key hash.unwrap(),
NEW PUBKEY HASH WIDTH,

);

ABDK

42

57

60

CVF-70. INFO

« Category Unclear behavior » Source transfer_to_new.rs

Description The signed data format for a transfer to new transaction differs from the
signed data format for a transfer transaction. This means that the sender needs to choose
between these two transaction types, rather than the operator. If two users sign two
transfer to new transactions to the same new address, only one of these transaction
could be successfully executed.

Recommendation Consider using the same signed data format for both transactions.

Client Comment Although the transaction construction codes of Transfer and Transfer-
ToNew look different, in fact, every field and length are identical and one-to-one cor-
responding. In the actual construction, tx_type of TransferToNew will also be used as
tx_code of Tranfer. This ensures that the Transfer transaction format is unique; This is
because TransferToNew involves creating a new account and pubdata involves linking to
NewAddress.

serialized tx bits.extend(tx code.get bits be());

serialized tx bits.extend(cur.account id.get bits be());

serialized tx bits.extend(op data[TransferToNewArgs:.
< FromSubAccountId]. get bits be());

serialized tx bits.extend(op data[TransferToNewArgs::NewAddress].
— get bits be());

serialized tx bits.extend(op data[TransferToNewArgs::ToSubAccountId
—].get bits be());

serialized tx bits.extend(cur.token.get bits be());

serialized tx bits.extend(op data[TransferToNewArgs::AmountPacked].
— get bits be());

serialized tx bits.extend(op data[TransferToNewArgs::FeePacked].
< get _bits be());

serialized tx bits.extend(cur.account.nonce.get bits be());

serialized tx bits.extend(op data[TransferToNewArgs::Timestamp].
< get bits be());

ABDK 43

CVF-71. FIXED

+ Category Flaw » Source full_exit.rs

Description The full exit transaction doesn’t update nonce, but still performs a nonce
overflow check. This makes it impossible to withdraw funds from an account with maxed
nonce.

Client Comment Removed.

56 | chunk0® valid flags.push(no _nonce overflow(
cs.namespace(|| "no nonce overflow"),
cur.account.nonce.get number(),

)?);

CVF-72. FIXED

o Category Procedural » Source full_exit.rs

Recommendation This check could have been done in the ‘a>b’ check for which the target
balance should be ‘a’ and amount should be ‘b

Client Comment Adopted.
82 let is balance 1t surplus = CircuitElement::less than fixed(
cs.namespace(||"is balance less than surplus"),

&user balance,
&op data[FullExitArgs::TargetChainSurplus],

ABDK 44

204

210

CVF-73. INFO

o Category Overflow/Underflow » Source forced_exit.rs

Description These variables are not range-checked against the expected bitlengths.
Recommendation Consider asserting.

Client Comment There are no overflow issues, and data out of bounds is checked by the
state handler module and type serialization.

Let account address initiator fe = Fr::from u64(forced exit.
< initiator account id as u64);

Llet account address target fe = Fr::from u64(forced exit.
< target account id as u64);

Llet 12 source token fe = Fr::from u64(forced exit.l2 source token as
— u64);

Llet 11 target token fe = Fr::from u64(forced exit.ll target token as
— u64);

Llet 11 target token after mapping = Fr::from u64(forced exit.
< 11 target token after mapping as u64);

let fee token fe = Fr::from u64(forced exit.fee token as u64);

Let amount as field element = Fr::from big uint(forced exit.amount.
— into());

let target sub account id = Fr::from u64(forced exit.
< target sub account id as u64);

let initiator sub account id = Fr::from u64(forced exit.
— initiator sub account id as u64);

Llet chain id = Fr::from u64(forced exit.chain id as u64);

CVF-74. INFO

o Category Unclear behavior + Source element.rs

Recommendation Should be "CAPACITY” instead of "NUM_BITS".

Client Comment This should be NUM_BITS, and we should allow all possible values of
SCALAR filed to be accepted.

82 assert!(witness bits.len() <= E::Fr::NUM BITS as usize);

ABDK 45

CVF-75. INFO

+ Category Suboptimal e Source full_exit.rs

Description This should be done only when "is_success” is true.

Client Comment When is_success is false, exit_amount is None, and eventually un-
wrap_or_default is called, exit_amount=0, so | got rid of is_success.

221 | |bal| bal.value.sub assign(&full exit.exit amount),

ABDK 46

9 Minorlssues

CVF-76. FIXED

o Category Procedural » Source exit_circuit.rs

Description The way how a zero element is obtained is different from circuit.rs.
Recommendation Consider using the same approach in both circuits.

Client Comment Adopted.

26 | let zero = AllocatedNum::zero(cs.namespace(||"zero"))?;

CVF-77.INFO

+ Category Procedural » Source exit_circuit.rs

Description Multiplication after division could lead to precision degradation.
Recommendation Consider multiplying before division.

Client Comment The 18 precision used here is high enough.
157 let withdraw_ratio = div_enforce(

163 let amount = multiply enforce(

CVF-78. FIXED

» Category Procedural e Source exit_circuit.rs

Description This constant is field specific.
Recommendation Consider naming it and putting into a common file.

Client Comment Added constant BN256_MASK.

339 hash result[0] &= 0Ox1f;
(%

PN

ABDK

CVF-79. FIXED

+ Category Bad datatype e Source circuit.rs

Recommendation These numbers should be named constants.

Client Comment Adopted.

144 data[DepositOp::0P CODE as usize] = vec![zero.clone(); 2];
data[TransferToNewOp::0P_CODE as usize] = vec![zero.clone(); 2];
data[WithdrawOp::0P CODE as usize] vec![zero.clone(); 21;
data[TransferOp::0P _CODE as usize] vec![zero.clone(); 21;
data[FullExitOp::0P_CODE as usize] = vec![zero.clone(); 21;
data[ChangePubKeyOp::0P CODE as usize] = vec![zero.clone(); 2];

150 data[ForcedExitOp::0P_CODE as usize] = vec![zero.clone(); 2];
data[OrderMatchingOp::0P CODE as usize] = vec![zero.clone(); 31];

CVF-80. INFO

o Category Unclear behavior e Source circuit.rs

Description This doesn’'t guarantee that all the holders are actually allocated. Removing
any of the lines 143..151 woundlt break this check.

Client Comment This is just a basic op quantity check.

155 assert eq! (pubdata holder.len(),
< ALL DIFFERENT TRANSACTIONS TYPE NUMBER);

CVF-81. INFO

+ Category Bad datatype e Source circuit.rs

Recommendation ‘7' should be a named constant.

Client Comment It’s weird to use a constant for 7 here, but our goal is to only set the first
byte to 1.

211 block onchain op offset bits.extend(vec![Boolean::constant(false);
— 71);

PN

ABDK 48

CVF-82. INFO

+ Category Suboptimal e Source circuit.rs

Description Using 8 bits for a flag looks redundant.
Recommendation Consider using 1 bit per flag.

Client Comment /t’s easier to use bytes in the contract.

211 block onchain op offset bits.extend(vec![Boolean::constant(false);
— 7]1);

CVF-83. FIXED

+ Category Bad naming * Source circuit.rs

Description The variable name "pre_state_root” is very similar to the name of another
variable: "prev_state_root”.

Recommendation Consider using more distinct names.

Client Comment Modified.

261 let (pre state root, ,) = check account data(

CVF-84. INFO

o Category Bad naming e Source circuit.rs

Recommendation The name is confusing, as its value is actually the current chunk.

Client Comment This is indeed the number used to describe the next chunk.

408 next chunk number: &AllocatedNum<E>,

ABDK 49

CVF-85. INFO

+ Category Procedural » Source circuit.rs

Recommendation These functions can be precomputed for all operations

Client Comment This function is defined by generics and cannot be precomputed.

417 | Let max_chunks powers = generate powers(

cs.namespace(|| "generate powers of max chunks"),
tx_type.get number(),
420 ALL DIFFERENT TRANSACTIONS TYPE NUMBER,

)?;

’

Let max_chunks last coeffs = generate maxchunk polynomial::<E>();

CVF-86. INFO

+ Category Suboptimal » Source circuit.rs

Recommendation Consider refactoring the code so that the equality of (a,b) is not
needed across op_data .

Client Comment Not sure what the problem is here.

582 let withdraw second = multi and(
cs.namespace(|| "withdraw second"),
&[zk link ops[WithdrawOp::0P _CODE as usize].clone(),
< 1s correct chunk numbers[1l].clone()],
)?;

587 let skip check a and b = multi or(
cs.namespace(|| "skip_check a_and b"),
&[
590 zk _link ops[OrderMatchingOp::0P_CODE as usize].clone(),

zk link ops[ForcedExitOp::0P CODE as usize].clone(),
withdraw second,

1,

ABDK 50

653

656

CVF-87. FIXED

+ Category Suboptimal e Source circuit.rs

Description Here a constant is converted to a circuit element at run time.

Recommendation Consider doing at compile time.

Client Comment Adopted.

Llet usdx_tokene_id upper bound = CircuitElement::
— from fe with known length(

CVF-88. FIXED

+ Category Bad datatype * Source circuit.rs

Recommendation This should be a named constant.

Client Comment Adopted.

8

ABDK

o1

736

740

750

760

CVF-89. FIXED

+ Category Procedural » Source circuit.rs

Recommendation The signature verification logic should be moved moved into a separate
function.

Client Comment Adopted.

Llet public generator = self
.jubjub params
.generator(FixedGenerators: :SpendingKeyGenerator);

Llet generator = ecc::EdwardsPoint::witness(
cs.namespace(|| "allocate public generator"),
Some (public generator.clone()),
self.jubjub params,

b7

Llet (public _generator x, public generator y) = public generator.

— into xy();

generator.get x().assert number(
cs.namespace(|| "assert generator x is constant"),
&public generator x,

)?;

generator.get y().assert number(
cs.namespace(|| "assert generator y is constant"),

&public generator vy,

}y?;
Llet signer key = unpack point if possible(
cs.namespace(|| "unpack pubkey"),
&op.signer pub key packed,

self.rescue params,
self.jubjub params,

}y?;

let signature data = verify circuit signature(
cs.namespace(|| "verify circuit signature"),
&op data,

&signer key,
&op.signature data,
self.rescue params,
self.jubjub params,
generator,
}y?;

’

(Some(signer_key), Some(signature data))

I

ABDK 52

947

1044

1083

CVF-90. INFO

+ Category Bad datatype e Source circuit.rs

Recommendation This should be a named constant

Client Comment This type is determined by generics and constant cannot be created.

&AllocatedNum: :one: :<CS>()

CVF-91. FIXED

o Category Suboptimal » Source circuit.rs

Recommendation This can be replaced by a simple check of three variables being all
equal to 0.

Client Comment Adopted.

let is account empty = {

CVF-92. FIXED

» Category Procedural » Source circuit.rs

Recommendation This comment should be resolved or removed.

Client Comment Removed.

ABDK 53

CVF-93. INFO

+ Category Suboptimal e Source circuit.rs

Recommendation This function could be simplified. Just construct a series of polynomi-
als P1, P2, ..., Pn such that Pi(i) = 1, and Pi(j) = 0 forjin{1, 2, ..,i-1,i+1, .., n} Then
calculate the result as: P1(c) ¢c1+ P2 (c) c2 + ... + Pn (c) cn. Here c is the chunk number
to select, and c1, c2, ..., cn are pubdata chunks.

Client Comment The Recommendation approach does not save much constraint be-
cause: 1. The calculation of each polynomial requires a linear combination constraint
2. Calculate x*1, x*2,... , x*3 powers also require n constant constraints 3. P1 (c) c1 + P2
(c) c2 + ... Plus Pn (c) cn requires n multiplicative constraints plus a linear combination.
So it doesn’t feel like it's reducing constraints.

1173 pub fn select pubdata chunk<E: JubjubEngine, CS: ConstraintSystem<E
— >>(

CVF-94. FIXED

+ Category Suboptimal » Source circuit.rs

Recommendation This function could be simplified as: multi_or (x1, X2, ..., xn) = (x1 + x2
+...+xn)!=0

Client Comment Rewritten, moved to utils.rs line 119.

1207 pub fn multi or<E: JubjubEngine, CS: ConstraintSystem<E>>(

CVF-95. FIXED

+ Category Procedural » Source circuit.rs

Recommendation This low-level utility function should be moved to some other file.

Client Comment Moved to utils.rs line 119.

1207 pub fn multi or<E: JubjubEngine, CS: ConstraintSystem<E>>(

ABDK o4

CVF-96. INFO

+ Category Suboptimal e Source circuit.rs

Recommendation These values could be precalculated.

Client Comment This function is defined by generics and cannot be precomputed.

1232 | let empty node hashes = calculate empty account tree hashes::<E>(
— params, tree depth);

CVF-97. INFO

« Category Suboptimal * Source circuit.rs

Recommendation This function can be precomputed.

Client Comment This function is defined by generics and cannot be precomputed.

1258 fn generate maxchunk polynomial<E: JubjubEngine>() -> Vec<E::Fr> {

CVF-98. INFO

o Category Suboptimal » Source deposit.rs

Description Data loss is possible when converting types here.
Recommendation Consider using checked conversion.

Client Comment There is no data loss here because both data are converted from a small
type to a large type.

33 12 target token: *deposit.tx.l12 target token as u32,

ABDK 55

47

62

67

72

78

90

195

204

CVF-99. FIXED

+ Category Suboptimal * Source deposit.rs

Description Here a variable name carries the data bitlength, which is a compile-time
constant. If the constant changes then the variable name should change.

Recommendation Consider putting the expected bitlength into an immutable variable of
the struct so that it can be matched with the provided bitlength.

&self.args.frs with 1 byte[O].unwrap(),
&self.args.frs with 2 bytes[1l].unwrap(),
&self.args.frs with 2 bytes[0].unwrap(),
&self.args.frs with 16 bytes[0].unwrap(),

&self.args.frs with 20 bytes[0].unwrap(),

CVF-100. FIXED

+ Category Procedural * Source deposit.rs

Recommendation This constant should be named.

Client Comment Adopted.

Llet mut commitment = vec![false; DepositOp::CHUNKS * 8];

CVF-101. FIXED
o Category Bad naming » Source deposit.rs
Recommendation Constant 0 should be named.

get audits(tree, *GLOBAL ASSET ACCOUNT ID, deposit.chain id, deposit
— .11 source token after mapping, 0);

(deposit.chain id, deposit.l1l source token after mapping, 0),

PN

ABDK 56

CVF-102. FIXED

+ Category Procedural * Source deposit.rs

Recommendation Consider removing this data.
Client Comment Removed.
272 frs with 8 bytes: vec!]|

Some(Fr::zero()), Some(Fr::from u64(u32::MAX as ub4))
].into(),

CVF-103. INFO

o Category Suboptimal » Source withdraw.rs

Description Outputting not an actual nonce seems odd.
Recommendation Consider always outputting the signed nonce

Client Comment Considering.

37 pubdata bits.extend(nonce.get bits be());

CVF-104. FIXED

o Category Documentation * Source withdraw.rs

Recommendation This comment looks incorrect

66 serialized withdraw bits.extend(op data[WithdrawArgs::IsFastWithDraw
—].clone().into padded be bits(8));

ABDK 57

106

183

261

CVF-105. FIXED

+ Category Bad datatype » Source order_matching.rs

Recommendation This should be a named constant.

Client Comment Added constant ORDERS_BIT_WIDTH.

orders bits.resize(1424, Boolean::constant(false));

CVF-106. FIXED

+ Category Readability » Source order_matching.rs

Recommendation nonece - nonce

let select order nonece = CircuitElement::conditionally select(

CVF-107. FIXED

« Category Bad naming » Source order_matching.rs

Recommendation The variable name is misleading as it covers chunks zero and one,
rather than just zero.

let is sub account correct in chunk 0 = multi and(

ABDK 58

261

265

307

337

340

CVF-108. INFO

+ Category Suboptimal » Source order_matching.rs

Recommendation These two flags could be merged into one that is calculated for the
chunks O, 1, and 2.

Client Comment The feeling here is that chunk2 cannot be merged into chunk 1 or 2, and
the situation is different.

let is sub account correct in chunk 0 = multi and(
let is sub account correct in chunk 2 = multi and(
CVF-109. FIXED

» Category Unclear behavior » Source order_matching.rs
Description Should it be ‘chunk0, 3"?
cs.namespace(|| "select post token in chunk0-2"),
CVF-110. FIXED

« Category Unclear behavior e Source order_matching.rs

Description This variable is always true as two flags may never be equal due to ‘match-
ing_trading_relationship’ flag enforcement.

Client Comment Fixed MakerlsSell to MakerSlotld. Fixed TakerlsSell to TakerSlotld.

let is different slot = CircuitElement::equals(
cs.namespace(|| "is different slot"),
&op data[OrderMatchingArgs: :MakerIsSell],
&op data[OrderMatchingArgs: :TakerIsSell],
)?.not();

ABDK 59

342

347

350

395

CVF-111. FIXED
+ Category Suboptimal » Source order_matching.rs
Description This is always equal to is_self_swap (see above)

Llet is self swap and different slot = Boolean::and(

CVF-112. FIXED

o Category Suboptimal » Source order_matching.rs
Description This is always true (see above)

boolean or(
cs.namespace(|| "if is self swap {is different slot}"),
&is self swap and different slot,

&is self swap.not()
)?

CVF-113. FIXED

« Category Suboptimal » Source order_matching.rs

Description There is no need to check this in every chunk.
Recommendation Consider checking only in one chunk.

Client Comment Adopted.

base flags.push(is price ok.clone());

ABDK

60

CVF-114. INFO

+ Category Suboptimal * Source deposit.rs

Recommendation Constant DepositOp::CHUNKS should be used here.

Client Comment Considering.

134 &[is chunk@ valid, is chunkl valid, is chunk2 valid,
< 1s correct _chunk numbers[3].clone()],

CVF-115. FIXED

+ Category Documentation » Source change_pubkey_offchain.rs

Description The role of this field is unclear.
Recommendation Consider documenting.

Client Comment Removed.

7 pub temp account id: u32,

CVF-116. INFO

o Category Suboptimal e Source change_pubkey_offchain.rs

Description Data loss is possible when converting types here.
Recommendation Consider using checked conversion.

Client Comment There is no data loss here because both data are converted from a small
type to a large type.

40 fee token: *change pubkey offchain.tx.fee token as u32,

42 nonce: Fr::from u64(*change pubkey offchain.tx.nonce as u64),

ABDK 61

CVF-117. FIXED

+ Category Bad datatype » Source change_pubkey_offchain.rs

Recommendation The indices should be named constants, or there should be a diagram
in the code explaining why these elements are selected.

54 &self.args.frs with 1 byte[O].unwrap(),
59 &self.args.frs with 4 bytes[1].unwrap(),
64 &self.args.frs with 1 byte[l].unwrap(),
69 &self.args.frs with 20 bytes[Q].unwrap(),
74 &self.args.frs with 20 bytes[1l].unwrap(),
79 &self.args.frs with 4 bytes[2].unwrap(),
89 &self.args.fees packed[Q].unwrap(),

102 let mut commitment = vec![false; ChangePubKeyOp::CHUNKS * 8];
commitment[7] = true;

ABDK 62

54

59
60

64

69

70

74

79
80

143

CVF-118. FIXED

+ Category Suboptimal » Source change_pubkey_offchain.rs

Description Here a variable name carries the data bitlength, which is a compile-time
constant. If the constant changes then the variable name should change.

Recommendation Consider putting the expected bitlength into an immutable variable of
the struct so that it can be matched with the provided bitlength

&self.args.frs with 1 byte[O].unwrap(),
CHAIN ID BIT WIDTH

&self.args.frs with 4 bytes[1l].unwrap(),
ACCOUNT _ID BIT WIDTH,

&self.args.frs with 1 byte[l].unwrap(),
SUB ACCOUNT ID BIT WIDTH,

&self.args.frs with 20 bytes[Q].unwrap(),
NEW PUBKEY HASH WIDTH,

&self.args.frs with 20 bytes[1].unwrap(),
ETH ADDRESS BIT WIDTH,

&self.args.frs with 4 bytes[2].unwrap(),
NONCE BIT WIDTH,

CVF-119. INFO

+ Category Readability » Source change_pubkey_offchain.rs

Recommendation Should be ‘change_pubkey_offchain’.

Client Comment Here it feels unnecessary, ChangePubkeyOffChainData is ChangePub-
keyOffChainOp to ChangePubkeyOffChainDataWitness an intermediate product.

change pubkey offcahin: ChangePubkeyOffChainData,

ABDK 63

CVF-120. FIXED

+ Category Suboptimal » Source change_pubkey_offchain.rs

Recommendation This flag is redundant. Just do: cur.balance = conditionally_select (
balance - fee, conditionally_select (balance + fee, cur.balance, is_chunk1), is_chunk_0);

Client Comment Adopted.

151 let is valid first or second = boolean or(

CVF-121. FIXED

« Category Procedural » Source utils.rs

Recommendation This issue should be removed or resolved

Client Comment Removed.

68

70

CVF-122. FIXED

+ Category Suboptimal * Source utils.rs

Description Reversing twice is suboptimal.
Recommendation Consider refactoring

Client Comment Optimized.

90 signature r x be bits.reverse();
96 signature r x be bits.reverse();
98 signature r y be bits.reverse();

104 signature r y be bits.reverse();

PN

ABDK 64

CVF-123. FIXED

+ Category Suboptimal * Source utils.rs

Description This code largely duplicates that of ‘sign_sha256' function.
Recommendation Consider refactoring.

Client Comment Removed.

124 pub fn sign_sha<E>(

CVF-124. FIXED

» Category Suboptimal » Source utils.rs

Recommendation This function could be simplified as: multi_and (x1, X2, ..., xn) = (x1 +
X2 + ... +Xn==n)

Client Comment Rewritten.

168 pub fn multi and<E: Engine, CS: ConstraintSystem<E>>(

CVF-125. INFO

o Category Overflow/Underflow e Source utils.rs

Description Overflow is possible here.
Recommendation Consider adding an explicit overflow check.

Client Comment If this overflows, the unwrap will panic.

258 E::Fr::from str(&product.to string()).unwrap()

ABDK 65

272

317

a17

CVF-126. INFO

o Category Overflow/Underflow » Source utils.rs

Description Overflow is possible here.
Recommendation Consider adding an explicit overflow check.

Client Comment If this overflows, the unwrap will panic.

E::Fr::from str("ient.to string()).unwrap()

CVF-127. INFO

o Category Unclear behavior » Source utils.rs

Description ‘b’ plays no role in the computation. Is it ok?

Client Comment b is going to be involved, but b and a are both amplified values.

Llet product = a.get number().mul(

CVF-128. INFO

+ Category Documentation « Source utils.rs

Recommendation Consider documenting that the caller must ensure that precision is not
too high

Client Comment So far, we have layer2 with an accuracy of 18.

precision:u64

ABDK 66

CVF-129. INFO

+ Category Suboptimal e Source transfer_to_new.rs

Description Data loss is possible when converting types here.
Recommendation Consider using checked conversion.

Client Comment Token is u16, there is no loss when converted to u32.

36 token: *transfer to new.tx.token as u32,

CVF-130. FIXED

» Category Suboptimal » Source transfer_to_new.rs

Recommendation This constant must be named.

Client Comment Removed this function.

182 &Fr::from u64(5u64),

CVF-131. INFO

+ Category Readability e Source transfer_to_new.rs

Recommendation Subtracting the sum would be more readable.

Client Comment The values here are all values that have been processed by the state
handler. If you subtract a negative number, the state handler will return an insufficient
balance error.

280 bal.value.sub assign(&amount as field element);
bal.value.sub assign(&fee as field element);

ABDK 67

401

41

CVF-132. INFO

+ Category Suboptimal e Source transfer_to_new.rs

Recommendation Should be u32

Client Comment This is just because from_u64 requires a u64 parameter.

Some(Fr::from u64(transfer to new.ts as u64)),

CVF-133. INFO

o Category Unclear behavior » Source signature.rs

Description This bit is packed_key[248]. Why is called r_x_bit?
Client Comment This bit is packed_key[256].

let r x bit =
AllocatedBit::alloc(cs.namespace(|]| "r x bit"),
— packed key bits correct order[0])7?;

CVF-134. INFO

« Category Unclear behavior « Source signature.rs

Description This drops elements 248 and 249 of the original array. Is this okay?

Client Comment The elements 248 and 249 of the original array are not dropped
E::Fr::NUM_BITS=253(bn256).

46 let r y = CircuitElement::from witness be bits(

cs.namespace(|| "signature r y from bits"),
&packed key bits correct order[start of y..],
)05

’

ABDK 68

290

313

320

330

CVF-135. FIXED

+ Category Readability * Source signature.rs

Recommendation Consider renaming.

Client Comment Modified.

Let hash input = multipack::pack into witness(

CVF-136. INFO

o Category Suboptimal » Source signature.rs

Recommendation Truncating two output elements to halfs does not make sense. It suf-
fices to just take one element and use its bits.

Client Comment In the essence we perform modular reduction, so to ensure uniformity
we only take half of the bits, so non-uniformity is around 1/ (char / (E::Fs::CAPACITY / 2))
that is around 1/2126.

Llet sO = sponge.squeeze out single(
cs.namespace(|| "squeeze first word form sponge"),
&rescue params,

let s1 = sponge.squeeze out single(
cs.namespace(|| "squeeze second word form sponge"),
&rescue params,

)?;
let sO bits =
s0.into bits le strict(cs.namespace(|| "make bits of first word
— for FS challenge"))?;
let sl bits =
sl.into bits le strict(cs.namespace(|| "make bits of second word

— for FS challenge"))?;
Llet take bits = (<E as JubjubEngine>::Fs::CAPACITY / 2) as usize;

let mut bits = Vec::with capacity(<E as JubjubEngine>::Fs::CAPACITY
< as usize);

bits.extend from slice(&sO bits[0..take bits]);

bits.extend from slice(&sl bits[0..take bits]);

assert!(bits.len() == E::Fs::CAPACITY as usize);

I

ABDK 69

CVF-137. INFO

+ Category Readability * Source withdraw.rs

Recommendation Subtracting the sum would be more readable.

Client Comment The values here are all values that have been processed by the state
handler. If you subtract a negative number, the state handler will return an insufficient
balance error.

292 bal.value.sub _assign(&amount as field element);
bal.value.sub assign(&fee as field element);

CVF-138. FIXED

+ Category Unclear behavior e Source transfer.rs

Description Seems this function is not used anywhere

Client Comment Removed this function.

140 pub fn get sig bits(&self) -> Vec<bool> {

CVF-139. FIXED

+ Category Bad datatype e Source transfer.rs

Recommendation This should be a named constant

Client Comment Removed this function.

144 &Fr::from u64(5u64),

ABDK 70

240

10

36

40

43

CVF-140. INFO

+ Category Readability e Source transfer.rs

Recommendation Subtracting the sum would be more readable.

Client Comment The values here are all values that have been processed by the state
handler. If you subtract a negative number, the state handler will return an insufficient
balance error.

bal.value.sub assign(&amount as field element);
bal.value.sub assign(&fee as field element);

CVF-141. INFO

+ Category Bad datatype * Source order_matching.rs

Recommendation Consider using designated types for that.

Client Comment Considering.

pub account: u32,

pub sub account id: u8,
pub slot _id: u32,

pub nonce: u32,

pub amount: ul28,

pub price: ul28,

pub is_sell: u8,

pub fee ratiol: u8,

pub fee ratio2: u8,

pub sub account id: u8,
pub tokens: (u32, u32),
pub fee: ul2s8,

pub fee token: u32,

pub submitter: u32,

pub is refresh order: (u8, u8),

ABDK 71

CVF-142. INFO

+ Category Suboptimal » Source order_matching.rs

Description Data loss is possible when converting types here.
Recommendation Consider using checked conversion.

Client Comment There is no data loss here because both data are converted from a small
type to a large type.

68 submitter: *order matching.submitter as u32,

73 *order matching.tx.maker.base token id as u32,
*order matching.tx.taker.quote token id as u32,

77 fee token: *order matching.tx.fee token as u32,

ABDK 72

CVF-143. FIXED

+ Category Suboptimal » Source order_matching.rs

Recommendation These code blocks could be significantly simplified by calculating
min(residue, residue2).

Client Comment Adopted and optimized.

282 1if residuel < residue2 {

Let actual exchanged = residuel
.checked mul(&maker.price.into())?
.checked div(&precision magnified)?;

(Fr::from big uint(residuel), Fr::from big uint(actual exchanged

—))
} else {

Llet actual exchanged = residue2

.checked mul(&maker.price.into())?

290 .checked div(&precision magnified)?;
(Fr::from big uint(residue2), Fr::from big uint(actual exchanged
—))
}

294 if residuel < residue? {
Let actual exchanged = residuel
.checked mul(&maker.price.into())?
.checked div(&precision magnified)?;
(Fr::from big uint(actual exchanged), Fr::from big uint(residuel
—))
} else {
300 Llet actual exchanged = residue2
.checked mul(&maker.price.into())?
.checked div(&precision magnified)?;
(Fr::from big uint(actual exchanged), Fr::from big uint(residue2
—))

ABDK 73

314

390

426

78

80

CVF-144. INFO

+ Category Procedural e Source order_matching.rs

Description These parameters are not used.

Recommendation Consider removing them.

Client Comment It is used on line 655.

Let maker fee ratio2 fe
— ub4);

let taker fee ratiol fe
— u64);

Fr::from u64(matching.maker.fee ratio2 as

Fr::from u64(matching.taker.fee ratiol as

CVF-145. INFO

+ Category Procedural e Source order_matching.rs

Description We did not review this function

Client Comment crypto/src/circuit/account.rs line 136
ord.update(

ord.update(

CVF-146. INFO

+ Category Suboptimal e Source full_exit.rs

Recommendation The "not” call is redundant here. Just interchange the values to be
selected.

Client Comment The recommended changes require modifying the function entry or cre-
ating a new zero variable with 128bits, which increases the circuit overhead.

Expression::constant::<CS>(E::Fr::zero()),

&cur.balance,
&1s address correct.not(),

PN

ABDK 74

CVF-147. FIXED

+ Category Bad datatype * Source operation.rs

Recommendation The vector lengths should be named constants.

Client Comment Adopted, added constant.

139 pub frs with bool: ArgumentsWithSamelLength<E, 2>,

140 pub frs with 1 byte: ArgumentsWithSamelLength<E, 7>,
pub frs with 2 bytes: ArgumentsWithSamelLength<E, 3>,
pub frs with 4 bytes: ArgumentsWithSamelLength<E, 5>,
pub frs with 8 bytes: ArgumentsWithSamelLength<E,4>,
pub frs with 15 bytes: ArgumentsWithSamelLength<E, 2>,
pub frs with 16 bytes: ArgumentsWithSamelLength<E, 5>,
pub frs with 20 bytes: ArgumentsWithSamelLength<E, 2>,
pub frs with max bytes: ArgumentsWithSamelLength<E, 1>,

pub fees packed: ArgumentsWithSameLength<E, 1>,
150 pub amounts packed: ArgumentsWithSamelLength<E, 2>,

CVF-148. INFO

o Category Suboptimal + Source allocated_structures.rs

Recommendation Consider asserting that the constants are not too big to make an over-
flow.

Client Comment The constant in the circuit means that once it is set, it cannot be changed
unless the verification key is upgraded in the contract.

146 sub _account id.get number().mul(
149)?.add(
165 sub account id.get number().mul(

168 |)?.add(

ABDK 75

391

76

94

CVF-149. FIXED

+ Category Suboptimal * Source allocated_structures.rs

Description This function is superseded with the "convert_amounts” function.

Recommendation Consider removing this function or refactoring the code to avoid du-
plication.

Client Comment Removed.

fn get _amounts<CS: ConstraintSystem<E>>(

CVF-150. FIXED

+ Category Documentation * Source utils.rs

Description The semantics of this argument is unclear.
Recommendation Consider documenting.

Client Comment Adopted.

offset commitment: Vec<bools>,

CVF-151. FIXED

» Category Procedural » Source utils.rs

Recommendation These extensions could be done once after the loop. Just calculate
the correct numbers of elements to be appended.

Client Comment Adopted.

self.pubdata.extend(vec![false; CHUNK BIT WIDTH]);
self.offset commitment.extend(vec![false; 8])

ABDK 76

CVF-152. INFO

o Category Overflow/Underflow » Source utils.rs

Description Overflow may be possible here.
Recommendation Consider asserting that no information is lost after truncation

Client Comment | don'’t think there are any overflow issues here, the data is handled by
the state handler, and the type conversions are small to large.

121 Some(Fr::from u64(*self.fee account id as ub4)),
Some(Fr::from u64(*self.block number as u64)),

151 block number: Some(Fr::from u64(*self.block number as u64)),
block timestamp: Some(Fr::from u64(self.timestamp)),
validator address: Some(Fr::from u64(*self.fee account id as

— u64)),

413 let slot id = calculate actual slot(sub account id.into(),slot id.
— into()).0 as u32;

464 let mut balance = validator leaf.subtree.remove(*actual token as u32
<).unwrap_or default();

466 validator leaf.subtree.insert(*actual token as u32, balance);

ABDK 77

CVF-153. FIXED

+ Category Procedural « Source utils.rs

Recommendation This code should probably be removed

Client Comment Adopted.

159 pub fn generate dummy sig data(
160 bits: &[bool],
rescue _hasher: &RescueHasher<Bn256>,
rescue params: &Bn256RescueParams,
jubjub params: &AltJubjubBn256,
) -> (SignatureData, Fr, Fr, Fr, Fr, Fr) {
Llet rng = &nut XorShiftRng::from seed([0x3dbe 6258, 0x8d31 3d76,
— 0x3237 _dbl7, Oxe5bc 0654]);
let p g = FixedGenerators::SpendingKeyGenerator;
let private key = PrivateKey::<Bn256>(rng.gen());
Let sender pk = PublicKey::from private(&private key, p g, &
— jubjub params);
Llet (sender x, sender_y) sender pk.0.into xy();
170 Llet mut sig bits to hash = bits.to vec();
assert!(sig bits to hash.len() <= MAX CIRCUIT MSG HASH BITS);

sig bits to hash.resize(MAX CIRCUIT MSG HASH BITS, false);

let (first sig part bits, remaining) = sig bits to hash.split at
< (Fr::CAPACITY as usize);

Llet remaining = remaining.to vec();

let (second sig part bits, third sig part bits) = remaining.
— split at(Fr::CAPACITY as usize);

let first sig part: Fr = le bit vector into field element(&
— first sig part bits);

let second sig part: Fr = le bit vector _into field element (&
— second sig part bits);

let third sig part: Fr = le bit vector_into field element (&
— third sig part bits);

180 let sig msg = rescue hasher.hash bits(sig bits to hash.clone());

let mut sig bits: Vec<bool> = BitIterator::new(sig msg.into repr
< ()).collect();

sig bits.reverse();

sig bits.resize(256, false);

ABDK 78

198

200

225

231

242

249

256

532

CVF-154. FIXED

+ Category Suboptimal * Source utils.rs

Recommendation These two lines could be replaced with a single "resize_grow_only” call.

Client Comment Adopted.

assert!(sig bits to hash.len() <= MAX CIRCUIT MSG HASH BITS);

sig bits to hash.resize(MAX CIRCUIT MSG HASH BITS, false);

CVF-155. FIXED

o Category Suboptimal » Source utils.rs

Description This code assumes the field size fits 256 bits, which may not be the case in
the future.

Recommendation Consider asserting it explicitly in the code.

Client Comment Fixed, and added constant.

public data initial bits.extend(vec![false; 256 - block number bits.
— len()]);

public data initial bits.extend(vec![false; 256 - validator id bits.
— len()]);

Llet mut packed old root bits
= 1;

vec![false; 256 - old root bits.len()

Llet mut packed new root bits
= 1;

vec![false; 256 - new root bits.len()
Llet mut timestamp bits = vec![false; 256 - timstamp unpadded bits.
— len()]1;

let signer pub key packed = vec![Some(false); 256];

ABDK 79

CVF-156. INFO

+ Category Suboptimal * Source utils.rs

Recommendation Designated types from tx::* should be used here.

Client Comment Considering.

312 account id: u32,
sub_account id: u8,
token: u32,
slot id: u32,

347 | token: u32,

381 account address: u32,
slot number: u32,

395 account id: u32,
(sub_account id, token id, slot id): (u8, u32, u32),

453 validator address: u32,
token: u32,
fee: ul2s8,

CVF-157. INFO

+ Category Bad datatype e Source utils.rs

Recommendation 32 should be a named constant

Client Comment |/ think adding a comment is fine, since most regular signature rs are 32
bytes long.

499 let (r_bytes, s bytes) = sig bytes.split at(32);

ABDK 80

CVF-158. FIXED

+ Category Procedural « Source utils.rs

Recommendation Consider moving this code to tests.

Client Comment Adopted.

643

pub fn corrupted variations(&self) -> Vec<Self> {

CVF-159. INFO

o Category Suboptimal e Source forced_exit.rs

Recommendation op_data elements can be used here as they are checked against
pre_branch in the code.

Client Comment It is possible for each OperationUint to be executed on a different ac-
count, so it is appropriate to use pre_branch here.

55 serialized tx bits.extend(pre branch.account id.get bits be());
serialized tx bits.extend(pre branch.sub account id.get bits be());

CVF-160. INFO

« Category Documentation » Source forced_exit.rs

Recommendation Consider explaining in the doc why ‘a’ is computed correctly for this
chunk.

Client Comment Since we checked that op_data.a should be greater than or equal to
op_data.b before executing all op, to ensure that the user balance would be greater than
the amount deducted in the subsequent execution of multiple op, so we need to do an
additional constraint check that the user balance is consistent with op_data.a.

120 chunkl valid flags.push(is a correct);

PN

ABDK 81

115

117

119

121

123

125

127

129

131

134

136

CVF-161. FIXED

+ Category Suboptimal

e Source serialization.rs

Recommendation All lengths must be global named constants.

Client Comment Adopted, added constant.

pub
pub
pub
pub
pub
pub
pub
pub
pub
pub

pub

frs with bool: ArgumentsWithSamelLength<Engine, 2>,

frs with 1 byte: ArgumentsWithSameLength<Engine, 7>,
frs with 2 bytes: ArgumentsWithSameLength<Engine, 3>,
frs with 4 bytes: ArgumentsWithSamelLength<Engine,5>,
frs with 8 bytes: ArgumentsWithSamelLength<Engine,4>,
frs with 15 bytes: ArgumentsWithSamelLength<Engine, 2>,
frs with 16 bytes: ArgumentsWithSamelLength<Engine,5>,

frs with 20 bytes: ArgumentsWithSamelLength<Engine, 2>,

frs_ with max bytes: ArgumentsWithSamelLength<Engine, 1>,

fees packed: ArgumentsWithSamelLength<Engine, 1>,

amounts packed: ArgumentsWithSameLength<Engine,2>,

CVF-162. FIXED

+ Category Procedural

e Source element.rs

Recommendation Consider implementing this function on

"into_

padded_le_bits” function.

Client Comment Adopted.

top

of

the

28 ' pub fn into padded be bits(self, to length: usize) -> Vec<Boolean> {

PN

ABDK

82

30

41

124

CVF-163. FIXED

+ Category Documentation * Source element.rs

Description Due to this commented line data loss is possible.

Recommendation Consider either uncommenting this or adding the word “unsafe” to the
name of the function to distinguish it from a very similar function "into_padded_le_bits”".

Client Comment Adopted.

CVF-164. FIXED

+ Category Suboptimal * Source element.rs

Description This check seems redundant, as self.length was already checked.
Recommendation Consider removing this check.

Client Comment Adopted.

assert!(n >= padded bits.len());

CVF-165. FIXED

« Category Documentation » Source element.rs

Description This comment is unclear.
Recommendation Consider elaborating more.

Client Comment The comment and the following two lines of code have been removed
because bits vector is originally E::Fr::NUM_BITS long.

ABDK 83

CVF-166. FIXED

+ Category Documentation * Source element.rs

Description This comment seems to be incorrect.

Client Comment Modified to “chosen number as ce”.

207 cs.namespace(|| "chosen nonce"),

CVF-167. FIXED

o Category Suboptimal ¢ Source element.rs

Description Converting numbers via string looks weird.
Recommendation Consider implementing a more elegant approach.

Client Comment Initialized the calculation with the BigUint type.

311 let two

= E::Fr::from str("2").unwrap();
Llet power =

E::Fr::from str(&length.to string()).unwrap();

CVF-168. FIXED

+ Category Procedural ¢ Source element.rs

Recommendation The function could be simplified by removing this line.

Client Comment Initialized the calculation with the BigUint type.

339 base.sub assign(&E::Fr::one());

ABDK 84

CVF-169. INFO

+ Category Bad datatype e Source full_exit.rs

Recommendation Consider using dedicated data types for these fields.

Client Comment Considering.

4 pub 12 source token: u32,
pub 11 target token: u32,
pub 11 target token after mapping: u32,
pub account _id: u32,
pub to chain id: u8,
pub sub account id: u8,

CVF-170. INFO

o Category Suboptimal » Source full_exit.rs

Recommendation The ‘7 constant must be named.

Client Comment It’s weird to use a constant for 7 here, but our goal is to only set the first
byte to 1.

96 | commitment[7] = true;

ABDK 85

ABDK

Consulting

About us

Established in 2016, is a leading service provider in the space of blockchain
development and audit. It has contributed to numerous blockchain projects, and co-
authored some widely known blockchain primitives like Poseidon hash function.

The ABDK Audit Team, led by Mikhail Vladimirov and Dmitry Khovratovich, has
conducted over 40 audits of blockchain projects in Solidity, Rust, Circom, C++,
JavaScript, and other languages.

Contact

X Email @ Website
dmitry@abdkconsulting.com abdk.consulting
W Twitter @ LinkedIn

twitter.com/ABDKconsulting linkedin.com/company/abdk-consulting

https://twitter.com/ABDKconsulting
https://abdk.consulting/
https://linkedin.com/company/abdk-consulting

	Changelog
	Introduction
	Project scope
	Methodology
	Our findings
	Critical Issues
	CVF-1. FIXED
	CVF-2. FIXED
	CVF-3. FIXED
	CVF-4. FIXED
	CVF-5. FIXED
	CVF-6. FIXED
	CVF-7. FIXED
	CVF-8. FIXED
	CVF-9. FIXED
	CVF-10. FIXED
	CVF-11. FIXED
	CVF-12. FIXED

	Major Issues
	CVF-13. INFO
	CVF-14. INFO
	CVF-15. INFO
	CVF-16. FIXED
	CVF-17. INFO
	CVF-18. INFO
	CVF-19. INFO
	CVF-20. INFO
	CVF-21. INFO
	CVF-22. INFO
	CVF-23. FIXED
	CVF-24. INFO
	CVF-25. INFO
	CVF-26. INFO
	CVF-27. INFO
	CVF-28. INFO
	CVF-29. INFO
	CVF-30. INFO
	CVF-31. INFO
	CVF-32. FIXED
	CVF-33. INFO
	CVF-34. INFO
	CVF-35. INFO
	CVF-36. INFO
	CVF-37. INFO
	CVF-38. INFO
	CVF-39. FIXED
	CVF-40. FIXED
	CVF-41. FIXED
	CVF-42. FIXED
	CVF-43. FIXED
	CVF-44. INFO
	CVF-45. FIXED
	CVF-46. FIXED
	CVF-47. FIXED
	CVF-48. INFO
	CVF-49. INFO
	CVF-50. INFO
	CVF-51. INFO
	CVF-52. INFO
	CVF-53. FIXED
	CVF-54. FIXED
	CVF-55. INFO
	CVF-56. INFO
	CVF-57. INFO
	CVF-58. FIXED
	CVF-59. FIXED

	Moderate Issues
	CVF-60. INFO
	CVF-61. INFO
	CVF-62. INFO
	CVF-63. INFO
	CVF-64. INFO
	CVF-65. INFO
	CVF-66. INFO
	CVF-67. INFO
	CVF-68. FIXED
	CVF-69. FIXED
	CVF-70. INFO
	CVF-71. FIXED
	CVF-72. FIXED
	CVF-73. INFO
	CVF-74. INFO
	CVF-75. INFO

	Minor Issues
	CVF-76. FIXED
	CVF-77. INFO
	CVF-78. FIXED
	CVF-79. FIXED
	CVF-80. INFO
	CVF-81. INFO
	CVF-82. INFO
	CVF-83. FIXED
	CVF-84. INFO
	CVF-85. INFO
	CVF-86. INFO
	CVF-87. FIXED
	CVF-88. FIXED
	CVF-89. FIXED
	CVF-90. INFO
	CVF-91. FIXED
	CVF-92. FIXED
	CVF-93. INFO
	CVF-94. FIXED
	CVF-95. FIXED
	CVF-96. INFO
	CVF-97. INFO
	CVF-98. INFO
	CVF-99. FIXED
	CVF-100. FIXED
	CVF-101. FIXED
	CVF-102. FIXED
	CVF-103. INFO
	CVF-104. FIXED
	CVF-105. FIXED
	CVF-106. FIXED
	CVF-107. FIXED
	CVF-108. INFO
	CVF-109. FIXED
	CVF-110. FIXED
	CVF-111. FIXED
	CVF-112. FIXED
	CVF-113. FIXED
	CVF-114. INFO
	CVF-115. FIXED
	CVF-116. INFO
	CVF-117. FIXED
	CVF-118. FIXED
	CVF-119. INFO
	CVF-120. FIXED
	CVF-121. FIXED
	CVF-122. FIXED
	CVF-123. FIXED
	CVF-124. FIXED
	CVF-125. INFO
	CVF-126. INFO
	CVF-127. INFO
	CVF-128. INFO
	CVF-129. INFO
	CVF-130. FIXED
	CVF-131. INFO
	CVF-132. INFO
	CVF-133. INFO
	CVF-134. INFO
	CVF-135. FIXED
	CVF-136. INFO
	CVF-137. INFO
	CVF-138. FIXED
	CVF-139. FIXED
	CVF-140. INFO
	CVF-141. INFO
	CVF-142. INFO
	CVF-143. FIXED
	CVF-144. INFO
	CVF-145. INFO
	CVF-146. INFO
	CVF-147. FIXED
	CVF-148. INFO
	CVF-149. FIXED
	CVF-150. FIXED
	CVF-151. FIXED
	CVF-152. INFO
	CVF-153. FIXED
	CVF-154. FIXED
	CVF-155. FIXED
	CVF-156. INFO
	CVF-157. INFO
	CVF-158. FIXED
	CVF-159. INFO
	CVF-160. INFO
	CVF-161. FIXED
	CVF-162. FIXED
	CVF-163. FIXED
	CVF-164. FIXED
	CVF-165. FIXED
	CVF-166. FIXED
	CVF-167. FIXED
	CVF-168. FIXED
	CVF-169. INFO
	CVF-170. INFO

