Report Customer
v, 1,0 zkLink

Smart Contract Audit

Solidity

6th February 2023 \/\ ABDK

, Consulting

Contents

1

o a A~ W N

Changelog
Introduction
Project scope
Methodology
Our findings

Critical Issues
CVF-41. FIXED . . . o e e e e e s e

Maijor Issues

CVF-3. INFO e
CVF-4. FIXED . . o e e e e e e e e e e e e e e
CVF-29. FIXED . . . e e e e e e e e
CVF-31 FIXED e e e e
CVF-40. INFO e e e e e e e e e
CVF-42. INFO e e e e
CVF-45. FIXED . . o e e e
CVF-50. FIXED e e e e e e
CVF-52. FIXED e e e e e e e
CVF-57. INFO e e
CVF-59. FIXED e e e e e
CVF-62. INFO e e e e e e e e
CVF-67. FIXED . . . o o e e e e e e e e e e
CVF-69. FIXED e e e
CVF-72. FIXED . . . e e e e
CVF-73. FIXED . . .
CVF-78. INFO e e e e e e
CVF-82. INFO e e e e e e e e
CVF-109. FIXED o e e e e e e e e
CVF-T0. INFO e e e e e e e s e e

Moderate Issues

CVF-18. INFO . . . e e
CVF-37. INFO . . . e e
CVE-51. INFO . . . o e
CVF-54. FIXED . . . e e e
CVF-58. INFO e e
CVF-61. FIXED . . . e e
CVF-66. FIXED e
CVE-77. FIXED . . . o o e e e

CVF-T0T. INFO . . o o 21

CVF-TTL INFO . . . e e e e e e e 22
CVF-T3. INFO . . . o e e e e e e 22
CVF-T14. INFO e e e s e e e 22
Minor Issues 23
CVF-1. INFO . . . e e e s e e 23
CVF-2. INFO e 23
CVF-5. FIXED . . e e e 23
CVF-6. INFO . . . o e 24
CVF-7. FIXED . . o e 24
CVF-8. FIXED . . o o e e 24
CVF-9. INFO e 25
CVF-10. FIXED . . . o o e e e e e 25
CVF-T1. FIXED . . . oo e e e e e e e 25
CVF-12. FIXED . . . o o e e e e e e 26
CVF-13. INFO . . o e e e e e 26
CVF-14. INFO e e e e e e e e 26
CVF-15. INFO . . . o e e e 27
CVF-16. INFO . . . o e e e 27
CVF-17. INFO . . o e e e e e e 27
CVF-19. FIXED . . . oo e e e e e 28
CVF-20. FIXED . . o e e 28
CVF-21. INFO . . . o e e e e s e e 28
CVF-22. INFO . . . e e e 29
CVF-23. FIXED . . o e 29
CVF-24. FIXED . . . o e e e 29
CVF-25. INFO . . . o e e e e e 30
CVF-26. FIXED . . o e e 30
CVF-27. FIXED . . o e e 30
CVF-28. INFO e e 31
CVF-30. FIXED . . o e e 31
CVF-32. FIXED . . o o e e 31
CVF-33. INFO . . . o e e 32
CVF-34. FIXED . . . o e e 32
CVF-35. FIXED . . o e 32
CVF-36. INFO e 33
CVF-38. INFO e 33
CVF-39. INFO e e 33
CVF-43. INFO e e 34
CVF-44. INFO e e e e e 34
CVF-46. INFO e e e 35
CVF-47. FIXED . . . o o e e e e e 35
CVF-48. FIXED e e 35
CVF-49. FIXED . . o e e 36

CVE-53. FIXED . o o 36

CVF-55. FIXED . o o 36

CVE-56. FIXED . . . 37
CVF-60. FIXED . . . 37
CVF-63. INFO 37
CVF-64. FIXED . . . 38
CVF-65. FIXED . . o 38
CVF-68. FIXED . . . 38
CVF-70. FIXED . . o 38
CVF-71. INFO . . e 39
CVF-74. INFO . . . e 39
CVF-75. INFO . . o 40
CVF-76. INFO 40
CVE-79.INFO . . . 40
CVF-80. INFO 41
CVF-81. INFO . . . 41
CVF-83.INFO . . . 41
CVF-84. FIXED . . . 42
CVF-85. FIXED . . o 42
CVF-86. INFO 42
CVF-87.INFO . . . e 43
CVF-88. INFO 43
CVF-89. FIXED . . o 43
CVF-90. INFO 44
CVF-91L FIXED . . o o e 44
CVF-92. FIXED . . o 44
CVF-93. FIXED . . 45
CVF-94. INFO 45
CVF-95. FIXED . . o 45
CVF-96. FIXED . . . 46
CVF-97. FIXED . . o o e 46
CVF-98. INFO 47
CVF-99. FIXED . . o 47
CVF-100. INFO o 48
CVF-102. INFO . . . 49
CVF-103. INFO . . . 50
CVF-104. INFO 50
CVF-105. INFO . . o 50
CVF-106. FIXED oo o o1
CVF-107. FIXED . o o o 51
CVF-108. INFO . . . 51
CVF-M2. FIXED . . o 52
CVF-MS.INFO . . o 52

CVF-116. FIXED . . . 52

1 Changelog

I K

03.02.23 A. Zveryanskaya Initial Draft
0.2 06.02.23 A. Zveryanskaya Minor revision
1.0 07.02.23 A. Zveryanskaya Release

ABDK S

2 Introduction

The following document provides the result of the audit performed by ABDK Consulting
(Mikhail Vladimirov and Dmitry Khovratovich) at the customer request. The audit goal is
a general review of the smart contracts structure, critical/major bugs detection and
issuing the general recommendations.

zkLink is a trading-focused multi-chain L2 network with unified liquidity secured by
ZK-Rollups.

ABDK 6

3 Project scope

We were asked to review:
¢ Original Code

e Code with Fixes

Files:

/
DeployFactory.sol Storage.sol ZkLink.sol
ZkLinkPeriphery.sol

token/
IZKL.sol

bridge/

. . ILayerZeroUser

ILayerZeroEndpoint.sol ILayerZeroReceiver.sol

ApplicationConfig.sol

LayerZeroBridge.sol LayerZeroStorage.sol

ABDK

https://github.com/zkLinkProtocol/zklink-contracts/tree/271a4501cb40c9e4ee37cf67f55ccc3c039ed828/contracts
https://github.com/zkLinkProtocol/zklink-contracts/tree/75589057c60e7ef8a1ae386fdf39957708244a95

4 Methodology

The methodology is not a strict formal procedure, but rather a selection of methods and
tactics combined differently and tuned for each particular project, depending on the
project structure and technologies used, as well as on client expectations from the audit.

» General Code Assessment. The code is reviewed for clarity, consistency, style,
and for whether it follows best code practices applicable to the particular
programming language used. We check indentation, naming convention,
commented code blocks, code duplication, confusing names, confusing, irrelevant,
or missing comments etc. At this phase we also understand overall code structure.

« Entity Usage Analysis. Usages of various entities defined in the code are
analysed. This includes both: internal usages from other parts of the code as well
as potential external usages. We check that entities are defined in proper places
as well as their visibility scopes and access levels are relevant. At this phase, we
understand overall system architecture and how different parts of the code are
related to each other.

e Access Control Analysis. For those entities, that could be accessed externally,
access control measures are analysed. We check that access control is relevant
and done properly. At this phase, we understand user roles and permissions, as
well as what assets the system ought to protect.

» Code Logic Analysis. The code logic of particular functions is analysed for
correctness and efficiency. We check if code actually does what it is supposed to
do, if that algorithms are optimal and correct, and if proper data types are used.
We also make sure that external libraries used in the code are up to date and
relevant to the tasks they solve in the code. At this phase we also understand
data structures used and the purposes they are used for.

We classify issues by the following severity levels:

o Critical issue directly affects the smart contract functionality and may cause a
significant loss.

» Majorissue is either a solid performance problem or a sign of misuse: a slight
code modification or environment change may lead to loss of funds or data.
Sometimes it is an abuse of unclear code behaviour which should be double
checked.

* Moderate issue is not an immediate problem, but rather suboptimal performance
in edge cases, an obviously bad code practice, or a situation where the code is
correct only in certain business flows.

» Minor issues contain code style, best practices and other recommendations.

ABDK 8

5 Our findings

We found 1 critical, 20 major, and a few less important issues. All identified Critical
issues have been fixed.

ISSUGS Active

Severity

Critical

Active Fixed

Major 8 12

Active Fixed

Moderate 8 4
. Active Fixed
Minor 42 a1

Fixed 58 out of 116 issues

ABDK 9

6 Criticallssues

CVF-41. FIXED
o Category Overflow/Underflow e Source ZkLinkPeriphery.sol

Description Overflow is possible here.

Recommendation Consider performing calculations in 256-bit numbers and using safe
math.

382 amountReceive = amount * (MAX ACCEPT FEE RATE - withdrawFeeRate) /
< MAX_ ACCEPT_FEE_ RATE;

ABDK 10

45

54

171

7 Major Issues

CVF-3. INFO

+ Category Suboptimal » Source Storage.sol
Recommendation This variable should be declared as immutable and should be set in

the constructor, rather than in the “initialize” and “upgrade” functions. This would make
the whole schema more efficient and less error-prone.

Client Comment Not a problem, we want individually upgrade periphery logic contract.

address public periphery;

CVF-4. FIXED

o Category Documentation + Source Storage.sol

Description This comment is incorrect, as “self” is an immutable variable, and immutable
variables don't occupy storage space.

CVF-29. FIXED

« Category Suboptimal * Source ZkLinkPeriphery.sol

Recommendation It would be more efficient to pass a single array of structs with five
fields, rather than five parallel arrays. This would also make the length checks unneces-
sary.

function addTokens(uintl6[] calldata tokenIdList, address]]
< calldata tokenAddressList, uint8[] calldata decimalslList,
— bool[] calldata standardList, uintl6[] calldata
< _mappingTokenList) external {

ABDK 11

181

186

381

1

24

CVF-31. FIXED

+ Category Suboptimal * Source ZkLinkPeriphery.sol

Description Here the whole “RegisteredToken” structure is read from the storage and
then is written back, while only a few fields are actually accessed.

Recommendation Consider using a storage reference to read and update fields in place.
RegisteredToken memory rt = tokens[tokenId];

tokens[tokenId] = rt;

CVF-40. INFO

o Category Unclear behavior e Source ZkLinkPeriphery.sol

Recommendation Should be “<=".

Client Comment Not a problem, feeRate of 100% is impossible.

require(withdrawFeeRate < MAX ACCEPT FEE RATE, "H4");

CVF-42. INFO

o Category Unclear behavior + Source
ILayerZeroUserApplicationConfig.sol

Description Ethereum chainlID is not guaranteed to fit into 16 bits.
Recommendation Consider using a wider type.

Client Comment Not a problem, chainld is defined by LayerZero , please see https://lay-
erzero.gitbook.io/docs/technical-reference/mainnet/supported-chain-ids.

function setConfig(uintl6é version, uintl6 chainId, uint
— _configType, bytes calldata config) external;

function forceResumeReceive(uintl6 srcChainId, bytes calldata
— _srcAddress) external;

PN

ABDK 12

56

142

146

CVF-45. FIXED

+ Category Documentation e Source ZkLink.sol

Description The parameters described here don’t match with the actual structure fields
below.

Recommendation Consider describing the actual fields.

CVF-50. FIXED

+ Category Suboptimal * Source ZkLink.sol

Description Three external calls are performed here which is redundant for most tokens.

Recommendation Consider maintaining a flag per token telling whether for the token
the actual transferred amount could differ from the requested amount, and do additional
balance calculations only for those tokens that actually need them.

uint256 balanceBefore = token.balanceOf(address(this));

_token.transferFrom(msg.sender, address(this), amount);
uint256 balanceAfter = token.balanceOf(address(this));

ABDK 13

164

199

379

742

767

778

227

CVF-52. FIXED

+ Category Suboptimal e Source ZkLink.sol

Description Here the whole “RegisteredToken” structure is read into the memory, while
only a few fields are actually used.

Recommendation Consider changing “memory” to “storage” here to avoid redundant
storage reads.

RegisteredToken memory rt

tokens[tokenId];

RegisteredToken memory rt tokens[tokenId];

RegisteredToken memory rt = tokens[tokenId];

RegisteredToken memory rt = tokens[op.tokenId];

RegisteredToken memory rt tokens[op.tokenId];

RegisteredToken memory rt

tokens[op.tokenId];

CVF-57. INFO

o Category Unclear behavior e Source ZkLink.sol

Description The “amount” value logged here could differ from both, the amount debited
from the contract and the amount credited to the user.

Recommendation Consider always logging the amount actually debited from the con-
tract.

Client Comment Not a problem, transferFromERCZ20 will return the actual debited amount
from the contract.

emit Withdrawal(tokenId, amount);

ABDK 14

288

295

352

357

362

CVF-59. FIXED

+ Category Suboptimal e Source ZkLink.sol

Description This function should emit some event.

function proveBlocks(StoredBlockInfo[] memory committedBlocks,
— ProofInput memory proof) external nonReentrant {

CVF-62. INFO

» Category Unclear behavior » Source ZkLink.sol

Description This ignores higher bits when comparing commitments.
Recommendation Consider explicitly requiring the higher bits to be zero.

Client Comment Not a problem, the higher 3 bits are erased because the max number
bits of circuit can represent is 253, and it’s safe enough to avoid hash conflict.

require(_proof.commitments[i] & INPUT MASK == uint256(
— _committedBlocks[i].commitment) & INPUT MASK, "x1");

CVF-67. FIXED

» Category Unclear behavior » Source ZkLink.sol
Recommendation Consider elaborating more regarding why overflow is not possible.

Even if it is not possible due to some business-logic constraints enforced in different
part of the code, it would still be better to use safe addition here.

firstPriorityRequestId += priorityRequestsExecuted;
totalCommittedPriorityRequests -= priorityRequestsExecuted;
totalOpenPriorityRequests -= priorityRequestsExecuted;

totalBlocksExecuted += nBlocks;

PN

ABDK 15

CVF-69. FIXED

+ Category Flaw e Source ZkLink.sol

Description In case a zero tokenld would ever be registered, all token addresses will
become registered as well.

Recommendation Consider explicitly checking that “tokenld” is not zero.

377 uintl6 tokenId = tokenIds[tokenAddress];

CVF-72. FIXED
» Category Overflow/Underflow e Source ZKkLink.sol
Description Overflow is possible here. Consider using safe addition and safe conversion.

419 uint64 expirationBlock = uint64(block.number + PRIORITY EXPIRATION);

434 totalOpenPriorityRequests++;

CVF-73. FIXED

o Category Unclear behavior » Source ZkLink.sol

Recommendation Even if overflow is impossible due to business-logic constraints, it
would still be better to use safe addition to prevent complicated attacks that use sev-
eral vulnerabilities.

421
uint64 nextPriorityRequestId = firstPriorityRequestId +
— totalOpenPriorityRequests;
447
totalCommittedPriorityRequests += lastCommittedBlockData.
< priorityOperations;
521

uint64 uncommittedPriorityRequestsOffset = firstPriorityRequestId +
— totalCommittedPriorityRequests;

PN

ABDK 16

567

623

61

CVF-78. INFO
+ Category Suboptimal e Source ZkLink.sol

Recommendation It would be enough to allocate MAX_CHAIN_ID - MIN_CHAIN_ID + 1
elements.

Client Comment Not a problem, we use index of the array to represent chain id.

onchainOperationPubdataHashs = new bytes32[] (MAX CHAIN ID + 1);
C%

CVF-82. INFO

o Category Suboptimal » Source ZkLink.sol

Recommendation No data copying is needed here, just copy a reference: process-
ablePubData = opPubData;

Client Comment Not a problem, because opPubData’ and ‘processablePubData’ will be
consumed in later concatHash.

processablePubData = Bytes.slice(opPubData, 0, opPubData.length);

CVF-109. FIXED

+ Category Flaw * Source LayerZeroBridge.sol

Description The length of the “contractAddr” argument is not checked against the cor-
responding destAddressLength value.

Recommendation Consider adding such a check.

function setDestination(uintl6 dstChainId, bytes calldata
— contractAddr) external onlyGovernor {

ABDK 17

67

CVF-110. INFO

+ Category Suboptimal e Source LayerZeroBridge.sol

Description There could be blockchains with variable address length, such as bitcoin.
Recommendation Consider somehow supporting such blockchains.

Client Comment Not a problem, the type of contractAddr’ is bytes that can support mut-
lichains.

ABDK 18

179

290

146

8 Moderate Issues

CVF-18. INFO

o Category Overflow/Underflow » Source Storage.sol

Description Overflow here may make it impossible th perform a priority operation and
thus trigger exodus mode.

Recommendation Consider supporting 256-bits pending balances.

Client Comment Not a problem, pending amount should not exceed uint128.max and
entering exdous mode is expected.

pendingBalances[packedBalanceKey] = balance.add(amount);

CVF-37. INFO

o Category Unclear behavior » Source ZkLinkPeriphery.sol

Description There is no check to ensure that tokenld is not zero.
Recommendation Consider adding such a check.

Client Comment Not a problem, tokenld will be checked later in function _checkAccept.

uintl6 tokenId = tokenIds[ETH ADDRESS];

CVF-51. INFO

+ Category Flaw e Source ZkLink.sol

Description The returned value is ignored.
Recommendation Consider explicitly requiring the returned value to be true.

Client Comment Not a problem, there may be no return value of ‘transferFrom:.

_token.transferFrom(msg.sender, address(this), amount);

PN

ABDK 19

CVF-54. FIXED

+ Category Flaw e Source ZkLink.sol
Description This check actually makes DDoS attacks possible, as a malicious user may

flood the contract with lots of priority requests effectively preventing normal users from
being able to exit. Such possibility could deteriorate trust in the protocol.

Recommendation Consider preventing DDoS attacks in other ways, e.g. by linearly in-
creasing the price of subsequent priority requests, to make a DDoS attack to cost O(n"2),
rather than O(n).

Client Comment Fix, we remove this check, protocol trust is first.

172 require(totalOpenPriorityRequests < MAX PRIORITY REQUESTS, "a4");

393 require(totalOpenPriorityRequests < MAX PRIORITY REQUESTS, "e6");

CVF-58. INFO

+ Category Flaw e Source ZkLink.sol

Description The returned value is ignored.
Recommendation Consider explicitly requiring that the returned value is true.

Client Comment Not a problem, there may be no return value of ‘transfer..

244 | token.transfer(_to, _amount);

248 | token.transfer(to, amount);

CVF-61. FIXED

o Category Overflow/Underflow » Source ZkLink.sol

Description Overflow is possible here.

293 ++currentTotalBlocksProven;

PN

ABDK 20

327

533

548

13

CVF-66. FIXED

o Category Overflow/Underflow e Source ZKLink.sol

Description Overflow is possible here. It should never happen in case there are no bugs
in the protocol, however it would still be better to use safe addition here.

revertedPriorityRequests += storedBlockInfo.priorityOperations;

CVF-77. FIXED

o Category Overflow/Underflow e Source ZKkLink.sol

Description Overflow is possible here.

Recommendation Consider using safe math.

require(pubdataOffset + 1 < pubData.length, "hl");

uint64 nextPriorityOpIndex = uncommittedPriorityRequestsOffset +
— priorityOperationsProcessed;

CVF-101. INFO

« Category Unclear behavior * Source |LayerZeroEndpoint.sol

Description It is unclear how the ZRO token holder authorizes the transaction. Simple
“approve” wouldn’t work here, as it would allow anyone to use approved ZRO tokens to
pay for a transaction.

Client Comment Not a problem, user must approve ZRO to LayerZero protocol if they
want to pay Iz protocol fee in ZRO token, please see https://github.com/LayerZero-
Labs/LayerZero/blob/3fb8f6962c1346eefa’7e12f2cd8c299f0cfba944/contracts/Ultra-
LightNodeV2.sol#L196.

ABDK 21

154

202

225

CVF-111. INFO

« Category Unclear behavior e Source LayerZeroBridge.sol

Description It is unclear how the “zroPaymentAddress” owner authorizes the transaction.
Simple “approve” call is not enough as anyone would be able to use the approved tokens
to pay transaction fees.

Client Comment Same as 101.

ILayerZeroEndpoint (endpoint) .send{value:msg.value}(dstChainId,
— trustedRemote, payload, params.refundAddress, params.
— zroPaymentAddress, params.adapterParams);

CVF-113. INFO

+ Category Flaw e Source LayerZeroBridge.sol

Description There is no nonce check, so itis possible to overwrite an already stored failed
message by specifying the same nonce again.

Client Comment Not a problem, nonce will be checked in
LayerZero protocol, please see https://github.com/LayerZero-
Labs/LayerZero/blob/3fb8f6962c1346eefa’7e12f2cd8c299f0cfba944/contracts/End-
point.sol#L102.

failedMessages[srcChainId] [srcAddress] [nonce] = keccak256(payload);

CVF-114. INFO

o Category Suboptimal e Source LayerZeroBridge.sol

Description The nonce value is used only in event parameters. There is no actual nonce
check.

Recommendation Consider either adding nonce check or removing nonce.
Client Comment Same as 113.
function nonblockinglLzReceive(uintl6 srcChainId, bytes calldata

— , uint64 nonce, bytes calldata payload) internal
= {

PN

ABDK 22

10

45

68

9 Minorlssues

CVF-1. INFO

+ Category Procedural + Source Storage.sol

Recommendation We didn’t review these files.

Client Comment These files are copyed from zkSync and all have been audited.

import "./zksync/Operations.sol";
import "./zksync/SafeMath.sol";

import "./zksync/SafeMathUInt128.sol";
import "./zksync/Config.sol";

import "./zksync/Verifier.sol";

CVF-2. INFO

+ Category Bad datatype » Source Storage.sol

Recommendation The type of this variable should bbe “ZkLinkPeriphery” or an interface
extracted from it.

Client Comment Not a problem, this variable is just a logic contract address, which only
be used in deletegatecall.

address public periphery;

CVF-5. FIXED

» Category Documentation e Source Storage.sol

Description It is unclear what is the difference between “tokenld” and “srcTokenld”.
Recommendation Consider explaining.

%

c_)

PN

ABDK 23

CVF-6. INFO

+ Category Suboptimal » Source Storage.sol

Recommendation It would be more efficient to merge these two maps into a single map
whose keys are address and nonce, and value are structs of two fields encapsulating the
values of the original maps.

Client Comment Not a problem, the usage of ‘authFacts’ is much more higher than ‘au-
thFactsResetTimer'.

77 (mapping(address => mapping(uint32 => bytes32)) public authFacts;

81 \‘,mapping(address => mapping(uint32 => uint256)) internal
| < authFactsResetTimer;

CVF-7. FIXED

» Category Documentation » Source Storage.sol

Description The semantics of keys and values in this mapping is unclear.

Recommendation Consider documenting.

98 {mapping(uinth => mapping(address => mapping(address => uintl128)))
| <+ internal brokerAllowances;

CVF-8. FIXED

« Category Documentation e Source Storage.sol

Description Despite the comment, this is not a list but rather a set.

Recommendation Consider rephrasing.

100 \‘ﬂ/// @notice List of permitted validators ‘
\mapping(address => bool) public validators; |

ABDK 24

106

107

108

CVF-9. INFO

+ Category Bad datatype » Source Storage.sol

Recommendation The type of this field should be “IERC20".

Client Comment Not a problem, ‘tokenAddress’ may be ETH_ADDRESS which represent
deposit or withdraw ETH.

address tokenAddress;

CVF-10. FIXED

« Category Procedural » Source Storage.sol

Description In ERC-20 the “decimals” property is used by Ul to render token amounts in
a human-friendly way. Using this property in smart contracts is discouraged.

Recommendation Consider treating all token amounts as integers.

uint8 decimals;

CVF-11. FIXED

+ Category Documentation » Source Storage.sol

Description It is unclear what is a standard token.

Recommendation Consider explaining.

bool standard;

ABDK 25

109

116

120

CVF-12. FIXED

« Category Unclear behavior » Source Storage.sol

Description It is unclear what is a mapping token, and the example doesn’t help.

Recommendation Consider elaborating more on this.

uintl6 mappingTokenId;
C_)

CVF-13. INFO

+ Category Bad datatype » Source Storage.sol

Recommendation The key type should be “IERC20".

Client Comment Same as 9.

mapping(address => uintl6) public tokenIds;

CVF-14. INFO

+ Category Bad datatype ¢ Source Storage.sol

Recommendation The type of this field should be “LayerZeroBridge” or an interface ex-
tracted from it.

Client Comment Not a problem, ‘bridge’ here is similar ‘owner' who has a special authority
to call function.

address bridge;

ABDK 26

CVF-15. INFO

+ Category Bad datatype » Source Storage.sol

Recommendation The key type should be “LayerZeroBridge” or an interface extracted
from it.

Client Comment Same as 14.

128 | mapping(address => uint256) public bridgelndex;

CVF-16. INFO

+ Category Documentation » Source Storage.sol

Recommendation Should be “block.timestamp predefined variable”.

Client Comment Not a problem.

137 |uint256 timestamp;
(_)

CVF-17. INFO

« Category Procedural » Source Storage.sol

Description Here a “StoredBlockInfo” struct is repacked in memory before hashing.
Recommendation Consider hashing in-place using an assembly block.

Client Comment Not a problem, keep same with circuit.

174 return keccak256(abi.encode(storedBlockInfo));

ABDK 27

CVF-19. FIXED

+ Category Suboptimal » Source Storage.sol
Recommendation This variable is redundant. Just use 0x0 memory offset instead, as

this function anyway either reverts of terminates the transaction, so it doesn’t need to
care about preserving memory contents.

194 let ptr := mload(0x40)

CVF-20. FIXED

o Category Suboptimal ¢ Source Storage.sol

Recommendation This variable is redundant, as the “RETURNDATASIZE” opcode is
cheaper than an access to a local variable.

200 let size := returndatasize()

CVF-21. INFO

« Category Procedural » Source ZkLinkPeriphery.sol

Description We didn’t review these files.

Client Comment These files are copyed from zkSync and all have been audited.

7 import "./zksync/ReentrancyGuard.sol";
import "./zksync/Events.sol";

10 import "./zksync/Bytes.sol";
import "./zksync/Utils.sol";
import "./zksync/SafeMath.sol";
import "./zksync/SafeCast.sol";
import "./zksync/IERC20.sol";

ABDK 28

CVF-22. INFO

+ Category Suboptimal * Source ZkLinkPeriphery.sol

Description This should be emitted only if exodus mode has not been activated yet.

Client Comment Not a problem, because there is a ‘active’ modifier applied to function
‘activateExodusMode'’.

32 emit ExodusMode();

CVF-23. FIXED

« Category Suboptimal * Source ZkLinkPeriphery.sol

Description The expression “firstPriorityRequestld + toProcess” is calculated on every
loop iteration.

Recommendation Consider calculating once before the loop.

74 for (uint64 id = firstPriorityRequestId; id < firstPriorityRequestId
<~ + toProcess; ++id) {

CVF-24. FIXED

» Category Unclear behavior » Source ZkLinkPeriphery.sol

Description This operation deletes every request, not only Deposit.

Recommendation Consider explaining in the documentation why deleting other requests
is okay.

85 delete priorityRequests[id];

ABDK 29

CVF-25. INFO

+ Category Suboptimal * Source ZkLinkPeriphery.sol

Recommendation As the length of a “_pubKeyHash” value must always be 20, consider
using the “bytes20” type instead of “bytes”.

Client Comment Not a problem, if _pubkeyHash’ is bytes20 and then we need to use
abi.encodePacked to convert it to bytes when call keccak256.

99 function setAuthPubkeyHash(bytes calldata pubkeyHash, uint32 nonce
<) external active nonReentrant {

CVF-26. FIXED

+ Category Unclear behavior * Source ZkLinkPeriphery.sol

Description Some event should be emitted in this case.

107 authFactsResetTimer[msg.sender][nonce] = block.timestamp;

CVF-27. FIXED

« Category Unclear behavior e Source ZkLinkPeriphery.sol

Description This check is redundant as it is anyway possible to set a dead governor
address.

130 require(newGovernor != address(0), "H");

ABDK 30

CVF-28. INFO

+ Category Procedural o Source ZkLinkPeriphery.sol

Description In ERC-20 the “decimals” property is used by Ul to render token amounts in
a human-readable way. Using this property in smart contracts is discouraged.

Recommendation Consider treating all token amounts as integers.

Client Comment Not a problem, token may has different decimals in chains, e.g. USDC
decimals is 6 in Ethereum, but 18 in BSC. We define token decimals is 18 in 12, so we need
to imcrease decimals when deposit and decrease decimals when withdraw.

143 | function addToken(uintl6 tokenld, address tokenAddress, uint8

< _decimals, bool standard, uintl6é mappingTokenId) public
— onlyGovernor {

CVF-30. FIXED

o Category Suboptimal o Source ZkLinkPeriphery.sol

Description In case other arrays are longer than the “_tokenldList” array, the remaining
parts of the other arrays are ignored.

Recommendation Consider explicitly requiring all the arrays to be of the same length.

172 | for (uint i; i < tokenlIdList.length; i++) {

CVF-32. FIXED

» Category Unclear behavior e Source ZkLinkPeriphery.sol
Description This function should return the index of the new bridge.

203 function addBridge(address bridge) external onlyGovernor {

ABDK 31

CVF-33. INFO

« Category Unclear behavior * Source ZkLinkPeriphery.sol

Description Here a newly added bridge is immediately enabled for both, incoming and
outgoing transfers.

Recommendation Consider implementing an ability to add a bridge in a not “all enabled”
state.

Client Comment Not a problem, when a new bridge is consider to used by our protocol,
it should be ready for inbound and outbound messages.

210 enableBridgeTo: true,
enableBridgeFrom: true

CVF-34. FIXED

» Category Suboptimal » Source ZkLinkPeriphery.sol
Recommendation This event should include the index of the new bridge.

215 emit AddBridge(bridge);

CVF-35. FIXED

+ Category Suboptimal * Source ZkLinkPeriphery.sol

Description The checks “info.bridge == bridge” are redundant.

Recommendation Consider removing them. This would also allow reading only a single
field from a “Bridgelnfo” structure.

237 return info.bridge == bridge && info.enableBridgeTo;

243 return info.bridge == bridge && info.enableBridgeFrom;

ABDK 32

250

353

364

CVF-36. INFO

« Category Unclear behavior * Source ZkLinkPeriphery.sol

Description This allows a bridge to update synchronization for any chain.

Recommendation Consider implementing a more fine-grained access control where each
bridge is associated with a set of chains the bridge is allows to update synchronization
for.

Client Comment Not a problem, a bridge can send message to zkLink contract in all
chains.

require(isBridgeFromEnabled(msg.sender), "C");

CVF-38. INFO

o Category Suboptimal » Source ZkLinkPeriphery.sol

Description The storage slot of the broker allowance is calculated twice.
Recommendation Consider refactoring to calculate it only once.

Client Comment Not a problem.

require(brokerAllowance(tokenId, accepter, msg.sender) >= amountSent

% , lIFlII);
brokerAllowances|[tokenId] [accepter][msg.sender] -= amountSent;

CVF-39. INFO

» Category Unclear behavior o Source ZkLinkPeriphery.sol

Description This function always returns true.
Recommendation Consider returning nothing,

Client Comment Not a problem, similar to ‘approve’ of ERC20.

function brokerApprove(uintl6 tokenId, address spender, uintl28
< amount) external returns (bool) {

I

ABDK 33

1

15

19

24

7

9
10

CVF-43. INFO

« Category Unclear behavior * Source
ILayerZeroUserApplicationConfig.sol

Description These functions should emit some events, and these events should be de-
clared in this interface.

Client Comment Not a problem, please see https://layerzero.gitbook.io/docs/evm-
uides/interfaces/evm-solidity-interfaces.

function setConfig(uintl6é version, uintl6 chainId, uint
— configType, bytes calldata config) external;

function setSendVersion(uintl6é _version) external;
function setReceiveVersion(uintl6é version) external;

function forceResumeReceive(uintl6é srcChainId, bytes calldata
< srcAddress) external;

CVF-44. INFO

+ Category Procedural » Source ZkLink.sol

Description We didn’t review these files.

Client Comment These files are copyed from zkSync and all have been audited.

import "./zksync/ReentrancyGuard.sol";

import "./zksync/Events.sol";

import "./zksync/UpgradeableMaster.sol";
import "./zksync/SafeMath.sol";

import "./zksync/SafeMathUInt128.sol";
import "./zksync/SafeCast.sol";

import "./zksync/Utils.sol";

import "./zksync/IERC20.sol";

ABDK 34

CVF-46. INFO

« Category Unclear behavior e Source ZkLink.sol

Description There is no explicit check to prevent this function from being called several
times.

Recommendation Consider adding such a check.

Client Comment Not a problem, ’initializeReentrancyGuard’ will prevent 'initialize’ to be
called serveral times.

81 function initialize(bytes calldata initializationParameters)
— external onlyDelegateCall {

CVF-47. FIXED

o Category Suboptimal e Source ZkLink.sol

Description This function is redundant, as a payable fallback function is already imple-
mented.

Recommendation Consider removing this function.

119 | receive() external payable {

CVF-48. FIXED

o Category Readability » Source ZkLink.sol

Recommendation It is a good practice to put a comment with the argument name next
to boolean literals passed as arguments. This would improve code readability.

129 deposit(ETH ADDRESS, SafeCast.toUintl28(msg.value), zkLinkAddress,
< _subAccountId, false);

ABDK 35

134

166

196

CVF-49. FIXED

+ Category Documentation e Source ZkLink.sol
Description This comment is confusing. The “token” argument type is “IERC20” and the

code deals with “token” as if it were ERC-20 token, while ERC-1155 tokens are not back-
ward compatible with ERC-20, so ERC-1155 token cannot be used with this function.

CVF-53. FIXED

+ Category Procedural » Source ZkLink.sol

Recommendation This assignment should be made in an “else” branch of the conditional
statement below.

uintl6é srcTokenId = tokenId;

CVF-55. FIXED

o Category Unclear behavior » Source ZkLink.sol

Description As the actual withdrawn amount could differ from the “_amount” argument
value, this function should return the actual amount withdrawn.

function withdrawPendingBalance(address payable owner, uintl6
< _tokenId, uintl28 amount) external nonReentrant {

ABDK 36

CVF-56. FIXED

+ Category Suboptimal e Source ZkLink.sol

Description The pending balance is potentially being updated twice.

Recommendation Consider refactoring to update it at most once.

209 pendingBalances|[packedBalanceKey] = balance - amount;
c_)

223 pendingBalances[packedBalanceKey] = balance - amountl;
<_>

CVF-60. FIXED

o Category Suboptimal e Source ZkLink.sol

Recommendation These two lines could be merged into one: require(hashStoredBlock-
Info(_committedBlocksli]) == storedBlockHashes[++currentTotalBlocksProven], “"x0");

292 require(hashStoredBlockInfo(committedBlocks[i]) ==
— storedBlockHashes[currentTotalBlocksProven + 1], "x0");
++currentTotalBlocksProven;

CVF-63. INFO

» Category Unclear behavior » Source ZkLink.sol

Description The mask is redundant here, since it does not guarantee that the result fits
the field.

Recommendation Consider removing this operation and replacing it (maybe elsewhere)
with a field check.

Client Comment Same as 62.

295 require(proof.commitments[i] & INPUT MASK == uint256(
< committedBlocks[i].commitment) & INPUT MASK, "x1");

PN

ABDK 37

316

316

363

378

CVF-64. FIXED

o Category Overflow/Underflow e Source ZKLink.sol

Description Overflow is possible here.

Recommendation Consider using safe conversion.

uint32 blocksToRevert = Utils.minU32(uint32(blocksToRevert.length),
< blocksCommitted - totalBlocksExecuted);

CVF-65. FIXED

» Category Overflow/Underflow e Source ZKkLink.sol
Description Underflow is possible during subtraction. It should never happen in case the
protocol is in a consistent state, however it would still be better to use safe subtraction
here.

uint32 blocksToRevert = Utils.minU32(uint32(blocksToRevert.length),
< blocksCommitted - totalBlocksExecuted);

CVF-68. FIXED

+ Category Procedural » Source ZkLink.sol

Recommendation This check should be done at the beginning of the function before
actually executing any blocks.

require(totalBlocksExecuted <= totalBlocksSynchronized, "d1");

CVF-70. FIXED
« Category Unclear behavior e Source ZkLink.sol
Description This assignment should be made only if “mapping” is false.

uintl6 targetTokenId = tokenld;

I

ABDK 38

CVF-71. INFO

+ Category Procedural » Source ZkLink.sol

Description In ERC-20 the “decimals” property is used by Ul to render token amounts in
a human-friendly way. Using this property in smart contract is discouraged.

Recommendation Consider treating all token amounts as integers.
Client Comment Same as 28.

383
_amount = improveDecimals(amount, rt.decimals);

745 uint128 amount = recoveryDecimals(op.amount, rt.decimals);

770 'uint128 amount

recoveryDecimals(op.amount, rt.decimals);

781 'uintl128 amount

recoveryDecimals(op.amount, rt.decimals);

CVF-74. INFO

+ Category Suboptimal * Source ZkLink.sol

Description Here a storage variable is updated on each loop iteration.
Recommendation Consider refactoring to update once after the loop.

Client Comment Not a problem, forward ‘totalCommittedPriorityRequests’ because it’s
will be reused in the next ‘commitOneBlock’.

448 totalCommittedPriorityRequests += lastCommittedBlockData.
< priorityOperations;

ABDK 39

471

490

569

632

CVF-75. INFO

+ Category Suboptimal e Source ZkLink.sol

Recommendation This check could be simplified as: require (_newBlock.times-
tamp - block.timestamp + COMMIT_TIMESTAMP_NOT_OLDER <= COMMIT_TIMES-
TAMP_NOT_OLDER + COMMIT_TIMESTAMP_APPROXIMATION_DELTA);

Client Comment Not a problem, current code is easier to understand.

require(block.timestamp.sub(COMMIT TIMESTAMP NOT OLDER) <= newBlock
— .timestamp &&
_newBlock.timestamp <= block.timestamp.add(
< COMMIT TIMESTAMP APPROXIMATION DELTA), "g3");

CVF-76. INFO

o Category Suboptimal e Source ZkLink.sol

Description Performing this check on every loop iteration is suboptimal.

Recommendation Consider splitting into two loops: one from MIN_CHAIN_ID to CHAIN_ID
-1 and another from CHAIN_ID + 1 to MAX_CHAIN_ID. Alternatively, consider copying all
elements including the element for the current chain, and then restoring the hash for the
current chain using a value, cached before the loop.

Client Comment Not a problem, current code is easier to understand.

if (i != CHAIN ID) {

CVF-79. INFO

o Category Suboptimal » Source ZkLink.sol

Recommendation It would be cheaper to update the “chainindex” incrementally like this:
chainindex «=1;

Client Comment Not a problem, we need to calculate the index of chain id in
ALL_CHAINS:

uint256 chainIndex 1l <<i - 1;

uint256 chainIndex

PN

ABDK 40

1 <<1i - 1;

570

633

571

644

649

CVF-80. INFO

+ Category Suboptimal e Source ZkLink.sol
Recommendation It would be cheaper to do: uint256 remainingChains = ALL_CHAINS

» (MIN_CHAIN_ID - 1); for (i = MIN_CHAIN_ID; remainingChains != 0; i++) { if (remain-
ingChains & 0x1!= 0) {...} remainingChains »=1; }

Client Comment Not a problem

if (chainIndex & ALL CHAINS == chainIndex) {

if (chainIndex & ALL CHAINS == chainIndex) {

CVF-81. INFO

» Category Suboptimal e Source ZkLink.sol

Recommendation Using zero instead as the initial value instead of an empty string hash,
would make this function unnecessary.

Client Comment Not a problem, keep same with circuit.

onchainOperationPubdataHashs[i] = EMPTY STRING KECCAK;

CVF-83. INFO

» Category Suboptimal » Source ZkLink.sol

Description The “abi.encodePacked” function is able to concatenate narrow data type
(shorter than 32 bytes) without padding, however, by converting values to “uint256”, this
functionality is not used.

Recommendation Consider removing convertions to reduce the number of bytes hashed.

Client Comment Not a problem, keep same with circuit.

commitment = sha256(abi.encodePacked (
uint256(newBlockData.blockNumber),
uint256(newBlockData.feeAccount),

uint256(newBlockData.timestamp),

ABDK 41

663

696

754

760

CVF-84. FIXED

+ Category Suboptimal e Source ZkLink.sol

Description The function usually returns false on failed verification.

Recommendation Consider returning false here as well.

revert("1");

CVF-85. FIXED

+ Category Readability * Source ZkLink.sol

Description The fact that the nonce always increases is asserted only in circuits.

Recommendation Consider making this fact explicit in the documentation to make the
code more readable.

return recoveredAddress == changePk.owner && changePk.nonce == 0;

CVF-86. INFO

+ Category Suboptimal * Source ZkLink.sol

Description This line appears in the code twice.
Recommendation Consider refactoring to avoid code duplication.

Client Comment Not a problem.

withdrawOrStore(op.tokenId, rt.tokenAddress, rt.standard, op.
< owner, amount);

withdrawOrStore(op.tokenId, rt.tokenAddress, rt.standard, op.owner,
< amount);

ABDK 42

CVF-87. INFO

« Category Unclear behavior e Source ZkLink.sol

Recommendation An actual address might be more useful here.

Client Comment Not a problem, tokenld cost less gas than tokenAddress in log.

807 emit Withdrawal(_ tokenId, amount);

CVF-88. INFO

o Category Suboptimal » Source ZkLink.sol

Recommendation The decimals factor could be precomputed for a tokens. No need to
calculate it on every deposit.

Client Comment Not a problem, current code is easier to understand.

839 return amount.mul(SafeCast.toUint128(10**(TOKEN DECIMALS OF LAYER2
— - _decimals)));

CVF-89. FIXED

+ Category Suboptimal * Source ZkLink.sol

Description Rounding down here may drop some dust.

Recommendation Consider leaving the dust at the account.

845 return _amount.div(SafeCast.toUint128(10**(TOKEN DECIMALS OF LAYER2
— - _decimals)));

ABDK 43

CVF-90. INFO

+ Category Procedural * Source DeployFactory.sol

Description We didn’t review these files.

Client Comment These files are copyed from zkSync and all have been audited.

5 import "./zksync/Proxy.sol";
import "./zksync/UpgradeGatekeeper.sol";
import "./zksync/Verifier.sol";

CVF-91. FIXED

» Category Unclear behavior e Source DeployFactory.sol

Recommendation Thew type of the “_periphery” argument would be “ZkLinkPeriphery”
or an interface extracted from it.

30 constructor(Verifier verifierTarget, ZkLink zkLinkTarget, address
< _periphery, uint32 blockNumber, uint256 timestamp, bytes32
— stateHash, bytes32 commitment, bytes32 syncHash, address
— firstValidator, address governor, address feeAccountAddress
%

) {

CVF-92. FIXED

+ Category Bad datatype + Source DeployFactory.sol

Recommendation The parameter types should be more specific.

43 event Addresses(address verifier, address zkLink, address gatekeeper
1

ABDK 44

63

17

19

19

CVF-93. FIXED

+ Category Suboptimal * Source DeployFactory.sol

Description The expression “ZkLinkPeriphery(address(zkLink))” is coded twice.

Recommendation Consider refactoring to avoid code duplication.

ZkLinkPeriphery(address(zkLink)).setValidator(validator, true);
ZkLinkPeriphery(address(zkLink)).changeGovernor(_governor);

CVF-94. INFO

« Category Suboptimal e Source LayerZeroStorage.sol

Recommendation These variables should be declared as immutable.

Client Comment Not a problem, they can be initialized only once.

address public networkGovernor;

address public endpoint;

CVF-95. FIXED

+ Category Bad datatype + Source LayerZeroStorage.sol

Recommendation The type of this variable should be “ILayerZeroEndpoint”.

address public endpoint;

ABDK 45

CVF-96. FIXED

+ Category Documentation » Source LayerZeroStorage.sol

Description The semantics of keys and values in this mapping is unclear.

Recommendation Consider documenting.

27 |mapping(uint16 => mapping(bytes => mapping(uint64 => bytes32)))
\ < public failedMessages;

CVF-97. FIXED

« Category Suboptimal e Source LayerZeroStorage.sol

Recommendation The chain ID parameters should be indexed.

29 [event UpdateDestination(uintl6 1zChainId, bytes destination);
30 event UpdateDestinationAddressLength(uintl6 1zChainId, uint8
— addressLength);

32 |event MessageFailed(uintl6 srcChainId, bytes srcAddress, uint64
< nonce, bytes payload);

event SendZKL(uintl6 dstChainId, uint64 nonce, address sender, bytes
< receiver, uint amount);

event ReceiveZKL(uintl6 srcChainId, uint64 nonce, address receiver,
< uint amount);

event SendSynchronizationProgress(uintl6 dstChainId, uint64 nonce,
— bytes32 syncHash, uint progress);

event ReceiveSynchronizationProgress(uintl6 srcChainId, uint64 nonce
<~ , bytes32 syncHash, uint progress);

ABDK 46

CVF-98. INFO

+ Category Bad naming » Source LayerZeroStorage.sol

T

Recommendation Events are usually named via nouns, such as “Destination”, “Destina-
tionAddressLength” etc.

Client Comment Not a problem.

29 | event
30 |event
BN

event
event

<_>
event

AN

event

AN

event

AN

event

SN

UpdateDestination(uintl6 1zChainId, bytes destination);

UpdateDestinationAddressLength(uintl6 1zChainId, uint8

addressLength) ;

UpdateAPP(APP app, address contractAddress);

MessageFailed(uintl6 srcChainIld, bytes srcAddress, uint64

nonce, bytes payload);

SendZKL (uintl6 dstChainId, uint64 nonce, address sender, bytes
receiver, uint amount);

ReceiveZKL (uintl6 srcChainId, uint64 nonce, address receiver,

uint amount);

SendSynchronizationProgress(uintl6 dstChainId, uint64 nonce,

bytes32 syncHash, uint progress);

ReceiveSynchronizationProgress(uintl6 srcChainId, uint64 nonce
, bytes32 syncHash, uint progress);

CVF-99. FIXED

+ Category Suboptimal * Source LayerZeroStorage.sol

Recommendation The “app” parameter should be indexed.

31 | event

ABDK

UpdateAPP(APP app, address contractAddress);

47

10

CVF-100. INFO

+ Category Documentation * Source |LayerZeroReceiver.sol

Description The description is confusing.
Recommendation Consider rephrasing.

Client Comment Not a problem, this file is copyed from LayerZero.

ABDK

48

15

24

29

33

41

44

50

55

78

CVF-102. INFO

+ Category Flaw * Source |LayerZeroEndpoint.sol

Description Ethereum chain ID is not guaranteed to fit into 16 bits.
Recommendation Consider using a wider type.

Client Comment Not a problem, the chain ids are custom defined by LayerZero.

"function send(uintl6 dstChainId, bytes calldata destination, bytes
— calldata payload, address payable refundAddress, address

— _zroPaymentAddress, bytes calldata adapterParams) external

— payable;

S

(function receivePayload(uintl6é srcChainId, bytes calldata
< srcAddress, address dstAddress, uint64 nonce, uint
— gasLimit, bytes calldata payload) external;

"function getInboundNonce(uintl6é srcChainId, bytes calldata
< srcAddress) external view returns (uint64);

N

"function getOutboundNonce(uintl6 dstChainId, address srcAddress)
— external view returns (uint64);

N

"function estimateFees(uintl6 dstChainId, address userApplication,
— bytes calldata payload, bool payInZRO, bytes calldata

— _adapterParam) external view returns (uint nativeFee, uint

< zroFee);

R

\function getChainId() external view returns (uintl6);

J

"function retryPayload(uintl6 srcChainId, bytes calldata _srcAddress\
— , bytes calldata payload) external;

"function hasStoredPayload(uintl6 srcChainId, bytes calldata
— _srcAddress) external view returns (bool);

N

"function getConfig(uintl6 version, uintl6 chainId, address
< userApplication, uint configType) external view returns (
— bytes memory);

PN

ABDK 49

CVF-103. INFO

« Category Unclear behavior * Source |LayerZeroEndpoint.sol

Description As some part of the passed ether could be refunded, this function should
return the actual ether amount used.

Client Comment Not a problem, this file is copyed from LayerZero.

15 | function send(uintl6 _dstChainId, bytes calldata _destination, bytes
— calldata payload, address payable refundAddress, address
— _zroPaymentAddress, bytes calldata adapterParams) external
— payable;

CVF-104. INFO

» Category Documentation » Source ILayerZeroEndpoint.sol

Description The returned values are not documented. Their number format is unclear.
Recommendation Consider documenting.

Client Comment Not a problem, this file is copyed from LayerZero.
41 function estimateFees(uintl6 dstChainId, address userApplication,
— bytes calldata payload, bool payInZRO, bytes calldata

— _adapterParam) external view returns (uint nativeFee, uint
— zroFee);

CVF-105. INFO

+ Category Bad datatype e Source |LayerZeroEndpoint.sol

Recommendation The types of the returned values could be more specific.

Client Comment Not a problem, this file is copyed from LayerZero.

59 function getSendLibraryAddress(address userApplication) external
< view returns (address):

63 function getReceivelibraryAddress(address userApplication) external
< view returns (address);

I

ABDK 50

43

o6

56

CVF-106. FIXED
+ Category Bad datatype e Source LayerZeroBridge.sol
Recommendation The type of the “_endpoint” argument should be “ILayerZeroEndpoint”.

function initialize(address governor, address endpoint) public
< initializer {

CVF-107. FIXED

+ Category Procedural e Source LayerZeroBridge.sol

Recommendation It is a good practice to put a comment into an empty block to explain
why the block is empty..

function authorizeUpgrade(address newImplementation) internal
< override onlyGovernor {}

CVF-108. INFO

o Category Suboptimal e Source LayerZeroBridge.sol

Description This function does noting and it is not declared as virtual.
Recommendation Consider removing it.

Client Comment Not a problem, we must override this function and add onlyGovernor
modifier because the default implemention do nothing about authorize.

function authorizeUpgrade(address newImplementation) internal
— override onlyGovernor {}

ABDK 51

194

264

276

278

CVF-112. FIXED

+ Category Suboptimal e Source LayerZeroBridge.sol

Recommendation The length check is redundant as the hash check supercedes the
length check.

require(trustedRemote.length > 0 && srcAddress.length ==
— trustedRemote.length && keccak256(trustedRemote) == keccak256(
< srcAddress), "Invalid src");

CVF-115. INFO

+ Category Procedural e Source LayerZeroBridge.sol

Recommendation This interface should be moved to a separate file named “IZkLink.sol”.

Client Comment Not a problem.

interface IZkLink {

CVF-116. FIXED

o Category Documentation » Source LayerZeroBridge.sol

Description The semantics of the progress values is unclear.

Recommendation Consider documenting.

function getSynchronizedProgress(StoredBlockInfo memory block)
— external view returns (uint256 progress);

function receiveSynchronizationProgress(bytes32 syncHash, uint256
— progress) external;

ABDK 52

ABDK

Consulting

About us

Established in 2016, is a leading service provider in the space of blockchain
development and audit. It has contributed to numerous blockchain projects, and co-
authored some widely known blockchain primitives like Poseidon hash function.

The ABDK Audit Team, led by Mikhail Vladimirov and Dmitry Khovratovich, has
conducted over 40 audits of blockchain projects in Solidity, Rust, Circom, C++,
JavaScript, and other languages.

Contact

X Email @ Website
dmitry@abdkconsulting.com abdk.consulting
W Twitter @ LinkedIn

twitter.com/ABDKconsulting linkedin.com/company/abdk-consulting

https://twitter.com/ABDKconsulting
https://abdk.consulting/
https://linkedin.com/company/abdk-consulting

	Changelog
	Introduction
	Project scope
	Methodology
	Our findings
	Critical Issues
	CVF-41. FIXED

	Major Issues
	CVF-3. INFO
	CVF-4. FIXED
	CVF-29. FIXED
	CVF-31. FIXED
	CVF-40. INFO
	CVF-42. INFO
	CVF-45. FIXED
	CVF-50. FIXED
	CVF-52. FIXED
	CVF-57. INFO
	CVF-59. FIXED
	CVF-62. INFO
	CVF-67. FIXED
	CVF-69. FIXED
	CVF-72. FIXED
	CVF-73. FIXED
	CVF-78. INFO
	CVF-82. INFO
	CVF-109. FIXED
	CVF-110. INFO

	Moderate Issues
	CVF-18. INFO
	CVF-37. INFO
	CVF-51. INFO
	CVF-54. FIXED
	CVF-58. INFO
	CVF-61. FIXED
	CVF-66. FIXED
	CVF-77. FIXED
	CVF-101. INFO
	CVF-111. INFO
	CVF-113. INFO
	CVF-114. INFO

	Minor Issues
	CVF-1. INFO
	CVF-2. INFO
	CVF-5. FIXED
	CVF-6. INFO
	CVF-7. FIXED
	CVF-8. FIXED
	CVF-9. INFO
	CVF-10. FIXED
	CVF-11. FIXED
	CVF-12. FIXED
	CVF-13. INFO
	CVF-14. INFO
	CVF-15. INFO
	CVF-16. INFO
	CVF-17. INFO
	CVF-19. FIXED
	CVF-20. FIXED
	CVF-21. INFO
	CVF-22. INFO
	CVF-23. FIXED
	CVF-24. FIXED
	CVF-25. INFO
	CVF-26. FIXED
	CVF-27. FIXED
	CVF-28. INFO
	CVF-30. FIXED
	CVF-32. FIXED
	CVF-33. INFO
	CVF-34. FIXED
	CVF-35. FIXED
	CVF-36. INFO
	CVF-38. INFO
	CVF-39. INFO
	CVF-43. INFO
	CVF-44. INFO
	CVF-46. INFO
	CVF-47. FIXED
	CVF-48. FIXED
	CVF-49. FIXED
	CVF-53. FIXED
	CVF-55. FIXED
	CVF-56. FIXED
	CVF-60. FIXED
	CVF-63. INFO
	CVF-64. FIXED
	CVF-65. FIXED
	CVF-68. FIXED
	CVF-70. FIXED
	CVF-71. INFO
	CVF-74. INFO
	CVF-75. INFO
	CVF-76. INFO
	CVF-79. INFO
	CVF-80. INFO
	CVF-81. INFO
	CVF-83. INFO
	CVF-84. FIXED
	CVF-85. FIXED
	CVF-86. INFO
	CVF-87. INFO
	CVF-88. INFO
	CVF-89. FIXED
	CVF-90. INFO
	CVF-91. FIXED
	CVF-92. FIXED
	CVF-93. FIXED
	CVF-94. INFO
	CVF-95. FIXED
	CVF-96. FIXED
	CVF-97. FIXED
	CVF-98. INFO
	CVF-99. FIXED
	CVF-100. INFO
	CVF-102. INFO
	CVF-103. INFO
	CVF-104. INFO
	CVF-105. INFO
	CVF-106. FIXED
	CVF-107. FIXED
	CVF-108. INFO
	CVF-112. FIXED
	CVF-115. INFO
	CVF-116. FIXED

